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 Execu�ve Summary 
 The  remote  co-crea�on  pla�orm  is  the  crea�ve,  pro-ac�ve  component  of  a  wider  pla�orm  concerned 
 with  offering  disabled  users  and  others  remote  access  to  cultural  assets.  It  is  mul�-layered  because  it 
 offers  simultaneously  different  levels  of  crea�ve  ac�vity  (ranging  from  en�rely  autonomous  individual 
 crea�vity  to  AI  generated  composi�on)  different  levels  of  sensing  of  states  of  mind  and  body, 
 including  behaviour  of  the  heart,  electrical  brain  ac�vity  and  recogni�on  of  facial  expression,  and 
 different ways of communica�ng this informa�on, ranging from hap�cs to avatars. 

 Introduc�on 
 The  Introduc�on  is  concerned  with  the  purposes  and  func�on  of  the  pla�orm,  the  nature  of  various 
 rou�ngs and the rela�onship of the project to disability 

 Background Architecture 
 In  order  to  describe  the  mul�-layered  nature  of  the  MuseIT  Remote  co-crea�on  pla�orm,  and  in 
 order  to  explain  the  complex  rela�onships  between  the  many  layers  within  it,  we  preface  the 
 Demonstra�ons  with  a  descrip�on  of  the  background  architecture  for  the  Dashboard,  where  all 
 rou�ngs and connec�ons are made clear. 

 This descrip�on includes - 
 •  A diagram of the background architecture 
 •  List of inputs 
 •  Se�ngs 

 Following  the  descrip�on  of  the  Dashboard  background  architecture,  there  is  a  short  report  on 
 progress  with  the  choice  of  app  (P.18  )  which  will  handle  sensor  data  collec�on,  processing, 
 transmission through JackTrip, avatar display, and hap�cs drivers. 

 Demonstra�ons 
 Although  significant  progress  has  already  been  made  with  all  layers  of  the  system,  the  WP5  team 
 agreed  to  present  for  Demonstra�on  those  that  are  developed  to  the  point  of  being  either  ready,  or 
 close to being ready for integra�on. 
 •  The  first  demonstra�on  (XSL)  is  the  signal  channel,  intended  to  add  sensor  data  to  spare  capacity 

 in  the  JackTrip  channel,  which  allows  data  to  be  communicated  together  with  JackTrip  audio  data 
 and at the same speed. 

 •  The  second  demonstra�on  (CERTH)  is  concerned  with  sensor  diagnos�cs,  and  in  par�cular  using 
 sensor data for emo�on recogni�on and mood induc�on. 

 •  The  Third  Demonstra�on  (CTL)  involves  mood  es�ma�on  through  the  use  of  Facial  Emo�on 
 Recogni�on, including par�ally occluded faces. 

 •  The  fourth  Demonstra�on  (CTL)  is  concerned  with  stress  es�ma�on,  through  calcula�on  of  Heart 
 Rate Variability 

 •  The  fi�h  Demonstra�on  (XSL)  is  concerned  with  a  computa�onal  model  of  the  musical  brain 
 capable of predic�ng the neurophysiological effects of individual tracks of music. 

 •  The  sixth  Demonstra�on  (XSL)  shows  how  the  pla�orm  “audifies”  users’  EEG,  and  then  uses  its 
 computa�onal  model  of  the  musical  brain  to  search  for  exis�ng  music  in  the  world  repertoire  that 
 is closest to the users’ EEG. 

 Par�cipatory Workshop 
 The  par�cipatory  workshop  was  in  effect  a  “seventh  demonstra�on”.  It  explored  the  poten�al  of 
 Heart  Rate  signals,  both  audio  and  hap�c  to  communicate  emo�ons  and  states  of  mind  and  body 
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 between  co-creators  both  in  proximity  and  remotely.  It  also  marked  the  beginning  of  the  process  of 
 the design of avatars. 

 Appendices 
 Most  of  the  Demonstra�ons  involve  detailed  descrip�on  and  referencing.  The  advice  of  our  reviewers 
 was to include this more detailed work in the Appendices. 

 Page |  7 

DRAFT



 1.  Introduc�on 
 Work  Package  5  is  concerned  with  the  design  and  proof  of  concept  of  a  remote  co-crea�on  pla�orm, 
 focused  on  the  needs  of  those  with  disability,  but  also  intended  for  universal  use.  The  main  concerns 
 are  zero  latency  -  that  is  to  say,  no  delay  in  the  sound  signal  between  users  -  and  enhanced  expressive 
 and  emo�onal  communica�on.  When  musicians  play  in  close  proximity,  a  whole  series  of  vitality 
 affects,  intui�ons  and  inten�onal  and  emo�onal  cueing  signals  are  shared.  At  a  distance  this 
 important  informa�on  is  lost;  the  inten�on  of  Muse-IT  is  to  replace  it  by  means  of  relevant  new 
 available  sensor  and  communica�on  technologies.  The  same  technologies  may  be  used  to  support 
 users  who  cannot  speak  or  move.  Muse-IT  is  capable  of  helping  users  generate  music  from  their 
 minds  and  bodies  without  verbal  or  gestural  communica�on.  It  also  uses  AI  tools  to  support  a  wide 
 range of crea�ve composi�onal processes. 

 The principal areas of technology implemented on the pla�orm may be described as: 

 1.  Effec�ve  low  latency,  allowing  co-creators  to  work  in  “real  �me”  without  the  delays  on 
 standard communica�on pla�orms. 

 2.  Sensor  and  communica�on  technologies,  allowing  users  to  cue  one  another  and  “share” 
 states of body and mind as they would in physical proximity in “real life”. 

 3.  Sensor  and  communica�on  technologies  to  enhance  users’  crea�ve  self-expression, 
 par�cularly in the case of users with challenges in verbal or physical communica�on. 

 4.  AI tools to support users in crea�ve processes. 

 The  pla�orm  is  mul�-layered,  in  the  sense  described  above,  of  different  layers  of  crea�vity,  ranging 
 from  autonomous  to  AI-supported,  and  different  levels  of  sensing  and  communica�on.  In  order  to 
 present  complex  and  frequently  overlapping  layers  in  a  comprehensible  way  we  have  prefaced  the 
 demonstra�on  with  a  diagram  and  summary  of  the  background  architecture  for  the  Dashboard, 
 somewhat  in  advance  of  schedule.  In  this  way  we  can  demonstrate  rou�ng  of  layers  throughout  the 
 system  from  input  to  output,  where  they  interlock  and  where  they  diverge,  their  rela�onship  to 
 dashboard  controls  and  of  course  their  func�on.  In  order  to  make  this  clear,  we  summarise  the  whole 
 system, including layers such as composi�on algorithms and AI tools, not yet ready for integra�on. 
 There  follows  a  short  discussion  about  app  technology  choices,  including  op�ons  for  UI  (game 
 engines, Electron etc.) and avatar display (Godot, Unreal etc.). 

 The  Demonstra�ons  describe  layers  that  are  currently  func�oning  and  ready  for  integra�on.  In  the 
 case  3.2,  the  layers,  once  integrated,  will  bifurcate,  with  data  routed  on  the  one  hand  to  a),  the 
 communica�on  of  states  of  mind  and  body  between  co-creators  and  on  the  other  hand  to  b),  support 
 of processes of self-expression as well as input for AI tools to assist in the process of composi�on. 

 Under  User-engagement/prototype  tes�ng  we  describe  the  latest  par�cipatory  workshops,  examining 
 the  use  of  HR  and  HRV  sensors,  hap�cs  and  avatars,  and  presen�ng  the  results.  It  has  clear  rela�ons 
 to demonstra�on case 3.1. 
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 2.  Background architecture for the Dashboard 
 2.1 Background architecture diagram 

 2.1.1 Alterna�ve Systems 
 Video  calling  and  conferencing  systems  have  become  increasingly  popular  in  recent  years  due  to  the 
 pandemic  and  the  move  to  remote/hybrid  working.  Systems  such  as  Zoom,  Skype  and  Teams  allow 
 voice  and  video  communica�on,  but  fall  short  when  people  try  to  use  them  for  music  due  to  a  mix  of 
 high  latency  and  audio  quality  that  has  been  op�mised  for  speech.  Addi�onally  these  systems  do  not 
 have  ways  to  send  addi�onal  data  synchronised  with  the  audio  stream  to  augment  sessions  with 
 sensor  or  other  data.  A  big  advantage  of  JackTrip's  use  of  JACK  is  that  we  can  control  and  mix  data 
 into the audio being transmi�ed. 

 2.1.2 Dashboard Architecture 

 The  dashboard  diagram  is  based  on  decisions  concerning  the  WP5  architecture  taken  during  valuable 
 partner  mee�ngs  when  the  consor�um  met  in  Cyprus,  October  2023.  The  diagram  tracks  the  rou�ng 
 of  layers  throughout  the  system,  from  ini�al  input  to  final  output.  An  important  feature  is  the  local 
 sensor  hub  where  data  is  gathered  and  then  directed  either  to  further  processing  or  to  outputs.  The 
 diagram  dis�nguishes  between  a)  communica�on  of  states  of  mind  and  body  between  co-creators 
 and  b)  co-composi�on  and  performance  (points  2.  and  3.  of  the  introduc�on  above).  But  there  is  a 
 single  sensor  hub;  and  there  are  emo�onal  detec�on  algorithms  and  other  layers  that  serve  both  a) 
 and b). 

 Figure 1  : Background architecture for dashboar  d 
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 2.2 Background architecture – layers 

 In  the  subsequent  sec�ons,  we  will  describe  the  mul�-layer  nature  of  the  pla�orm,  through  the  op�cs 
 of controls, input and se�ngs. 

 2.2.1 Controls 
 The  nature  of  the  controls  will  be  determined  by  the  par�cipatory  session  with  the  co-designers  and 
 poten�al  users.  The  March  workshops  are  concerned  with  heart  rate  and  hap�cs  and  reported  in  this 
 paper.  The  April  workshops  will  test  all  sensors  to  be  used  in  the  system,  including  facial  emo�on 
 recogni�on.  The  process  will  not  be  completed  un�l  next  year,  when  all  of  the  possibili�es  ranging 
 from  conven�onal  manual  controls  to  hap�cs,  eye  movement,  movement  capture  or  vocal  cues 
 (voice) will have been fully explored and tested. 

 These  controls  will  need  to  be  able  to  select  and  ac�vate  inputs,  se�ngs,  and  outputs,  and  to  control 
 levels. There may be more than one form of control. 

 2.2.1.1 Inputs 

 INPUTS  HR/HRV  GSC  EEG  HAPTIC  AUDIO  MIDI  VIDEO/IMAGE  BVP  ACCEL  TEMP 

 ●  ●  ●  ●  ●  ●  ●  ●  ●  ● 

 SENSORS  🡭  🡬  🡩  🡩  🡩  🡭  🡬  🡩  🡭  🡬  🡩  🡩  🡩 

 HR  HRV  GSC  EEG  Hap�c  Voice  Instrument  Camera 
 Mo�on 
 capture 

 BVP  ACCEL  TEMP 

 2.2.1.2 HR and HRV 

 HR  is  Heart  Rate  and  describes  the  speed  at  which  the  heart  is  bea�ng,  usually  in  beats  per  minute. 
 HRV  is  a  measure  of  Heart  Rate  Variability.  When  we  have  nega�ve  emo�ons  our  hearts  tend  to  beat 
 in  a  rigid  manner  with  low  variability.  When  we  have  posi�ve  emo�ons  the  heart  tends  to  beat  with 
 higher  variability.  HRV  may  therefore  act  as  a  measure  of  valence  or  vagal  power.  An  ECG  is  an 
 Electrocardiogram that measures the heart’s rhythm and electrical ac�vity. 

 The  Heart  Rate  and  Heart  Rate  Variability  input  will  route  ECG  sensor  data  to  the  sensor  hub,  where  it 
 will  be  analysed  by  algorithms,  developed  by  partners  CERTH  and  CTL,  to  extract  HR  and  HRV  values 
 both  to  contribute  to  CERTH  AI  iden�fica�on  of  emo�ons  for  communica�on  to  co-creators  and  for 
 use  in  music  genera�on.  HR  data  may  also  be  routed  via  the  sensor  hub  or  directly  to  Jack  Trip 
 outputs  to  the  co-creator’s  hap�c  interface.  Furthermore,  the  HR  and  HRV  data  will  be  routed  to  CTL’s 
 stress es�ma�on algorithm. 

 ECG  🡪  Sensor hub  🡪  HR and HRV extrac�on (CERTH/CTL) 
 🡪  Emo�on iden�fica�on AI (CERTH) 

 🡪  HR signal directly to-creator’s 
 hap�c interface 

 🡪  Music genera�on 
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 2.2.1.3 BVP 

 BVP,  or  Blood  Volume  Pulse,  is  a  method  of  detec�ng  heart  beats  by  measuring  the  volume  of  blood 
 passing the sensor in either red or infrared light. 
 Blood  Volume  Pulse  input  will  route  BVP  data  to  the  sensor  hub  where  it  will  contribute  to  CERTH 
 extrac�on  of  HRV  values  and  to  CERTH  AI  iden�fica�on  of  emo�ons,  and  possibly  to  music 
 genera�on. 

 BVP  🡪  Sensor hub  🡪  HR and HRV extrac�on (CERTH)  🡪  Emo�on iden�fica�on AI (CERTH) 

 2.2.1.4 GSC 

 GSC,  or  Galvanic  Skin  Conductance  is  a  method  to  measure  the  electrical  conduc�vity  of  the  skin  in 
 response  to  s�muli.  When  we  experience  something  par�cularly  emo�onal  in  some  way,  we  trigger 
 our  sweat  glands  in  very  small  ways  that  we  are  not  aware  of,  whereby  our  skin  becomes  more 
 conduc�ve  to  electricity.  In  general  high  conduc�vity  is  related  to  wet  skin  and  high  arousal 
 autonomic ac�vity and low conductance to dry skin and low autonomic arousal. 
 The  Galvanic  Skin  Conductance  input  will  route  GSC  sensor  data  to  the  sensor  hub  where  it  will 
 contribute to CERTH AI iden�fica�on of emo�ons and possibly contribute to music genera�on. 

 EEG  🡪  Sensor hub 
 🡪  Emo�on iden�fica�on AI (CERTH) 

 🡪  Music genera�on 

 2.2.1.5 EEG 

 EEG  ,  or  Electroencephalography  is  the  recording  of  electrical  brain  ac�vity,  usually  related  to 
 different levels of consciousness and wakefulness. 
 The  Electroencephalography  input  will  route  mul�-channel  EEG  data  to  the  sensor  hub  where  it  will 
 contribute  to  CERTH  AI  iden�fica�on  of  emo�ons  and  will  be  further  routed  to  MODA/XSL  and/or  to 
 SU brain stethoscope technology for audifica�on and use in music genera�on. 

 EEG  🡪  Sensor hub 
 🡪  Emo�on iden�fica�on AI (CERTH) 

 🡪  MODA (XSL) and/or Brain Stethoscope for audifica�on  and music genera�on 

 2.2.1.6 Hap�cs 

 The  Hap�c  input  will  route  data  from  hap�c  sensors  to  the  sensor  hub,  and  then  directly  to  JackTrip 
 outputs, and on to the receiver hap�c interfaces of co-creators. 

 Hap�cs  🡪  Sensor hub  🡪  JackTrip outputs 

 2.2.1.7 Audio 

 The  Audio  input  will  receive  signals  from  a  pair  of  stereo  microphones  and  might  also  receive  signals 
 from  contact  mikes.  This  may  involve  voice  or  live  instruments.  The  signal  will  be  routed  to  the  sensor 
 hub,  then  directly  via  the  JackTrip  output  to  co-creators.  The  signals  may  also  be  used  to  accompany 
 or modulate music genera�on. 

 Audio  🡪  Sensor hub 
 🡪  JackTrip outputs 

 🡪  Accompaniment and modula�on of music genera�on 
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 2.2.1.8 MIDI 

 MIDI,  or  Musical  Instrument  Digital  Interface  is  a  standard  to  transmit  and  store  music,  originally 
 designed  for  digital  music  synthesisers.  MIDI  does  not  transmit  recorded  sounds.  Instead,  it  includes 
 musical  notes,  �mings  and  pitch  informa�on,  which  the  receiving  device  uses  to  play  music  from  its 
 own sound library. 

 The  Musical  Instrument  Digital  Interface  input  will  route  MIDI  data  to  the  sensor  hub,  then  directly 
 via  the  Jack  Trip  output  to  co-creators.  The  signals  may  also  be  used  to  accompany  or  modulate  music 
 genera�on, in par�cular SOMAX-based AI. 

 MIDI  🡪  Sensor hub 
 🡪  JackTrip outputs 

 🡪  Accompaniment and modula�on of music genera�on 

 2.2.1.9 Video 

 The  Video  input  will  be  linked  to  a  video  camera  and  will  route  visual  facial  data  to  the  CTL  mood 
 es�ma�on  algorithm.  The  results  will  be  either  represented  by  hap�cs  or  avatars  or  combined  with 
 CERTH emo�onal iden�fica�on AI. The video may also be used for mo�on capture. 

 Video  🡪  Sensor hub 

 🡪  Mo�on Capture 

 🡪  Mood Es�ma�on Algorithm (CTL)  🡪  Direct to hap�c/avatar 
 representa�on 

 🡪  Combined emo�onal 
 iden�fica�on AI (CERTH) 

 2.2.1.10 ACCEL 

 The accelerometer input will route data to the CERTH emo�onal iden�fica�on AI. 
 ACCEL  🡪  Sensor hub  🡪  Emo�onal iden�fica�on AI (CERTH) 

 2.2.1.11 TEMP 

 The  temperature  input  will  route  peripheral  skin  temperature  data  to  the  CERTH  emo�onal 
 iden�fica�on AI. 

 TEMP  🡪  Sensor hub  🡪  Emo�onal iden�fica�on AI (CERTH) 

 2.2.1.12 Eye Tracker 

 If  the  Eye  tracker  is  also  used  as  a  control,  then  non-control  data  may  be  sent  to  the  sensor  hub  and 
 CERTH  emo�onal  iden�fica�on  AI.  If  not,  then  there  will  be  a  dedicated  eye  tracker  input  on  the 
 dashboard. 

 Eye tracker  🡪  Sensor hub  🡪  Emo�onal iden�fica�on AI (CERTH) 
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 2.2.2 Se�ngs 

 Hap�cs  Avatars  Emo�onal 
 representa�ons  AI agent  AI assisted 

 composi�on 
 EEG generated 

 composi�on 

 Sensor 
 generated 

 composi�on 

 Style/ 
 Language 
 selec�on 

 ●  ●  ●  ●  ●  ●  ●  ● 

 🡩  🡩  🡩  🡩  🡩  🡩  🡩  🡩 

 2.2.2.1 Hap�cs 

 Hap�cs  is  defined  as  a  technology  that  transmits  tac�le  informa�on  using  sensa�ons  such  as 
 vibra�on, touch, and force feedback. 

 Hap�c  and  vibra�onal  data  (e.g.  musical  cueing,  HR,  selected  low  frequency  sound  etc.)  will  be  routed 
 from  hap�c,  HR  and  HRV  sensors  by  way  of  the  relevant  INPUTS  to  the  sensor  hub,  and  then  on  to 
 JackTrip  outputs.  The  hap�c  signals  will  be  received  by  co-creators  by  way  of  the  receiver  hap�c 
 interface. 

 Hap�c output  🡪  Hap�c input  🡮 

 Audio  🡪  Audio input  🡪  Sensor hub  🡪  JackTrip output  🡪  Co-created hap�c interface 

 HR sensor  🡪  HR/HRV input  🡭 

 2.2.2.2 Avatars 

 An  avatar  is  an  electronic  image  that  may  represent  a  person  or  an  emo�on  and  is  manipulated  by  a 
 computer user (as in a computer game.) 
 Avatars  will  be  generated  from  the  full  range  of  sensor  inputs  as  well  as  musical/audio  inputs,  from 
 CERTH  emo�onal  iden�fica�on  AI  and/or  CTL  mood  es�ma�on  and/or  XSL  autonomic  arousal/vagal 
 power  colour  circles.  Avatar  data  will  be  directed  to  JackTrip  outputs,  and  then  on  to  the  co-creators’ 
 receiver display. 

 Inputs  🡪  Sensor hub 

 🡭  Emo�onal iden�fica�on AI 
 (CERTH) 

 🡮 

 Avatar 
 generator 

 JackTrip 
 outputs 

 Co-creat 
 or 
 display 

 🡪  Mood es�ma�on algorithm (CTL)  🡪 
 🡪  🡪 

 🡪  Audio Input (XSL)  🡪 

 🡮  MODA EEG Input (XSL)  🡭 

 2.2.2.4 AI Agent 

 AI  agents  usually  control  or  op�mise  devices,  or  enable  robots  to  perform  tasks.  In  music  they  may  be 
 regarded  as  ar�ficially  intelligent  crea�ve  agents,  capable  of  entering  crea�ve  dialogues  with  human 
 beings.  XSL,  or  X-System  is  a  computa�onal  model  of  the  musical  brain  capable  of  predic�ng  the 
 neurophysiological  effects  of  music  and  iden�fying  music  close  to  the  electrical  brain  ac�vity  of 
 individuals.  SOMAX  (Somax2)  is  an  applica�on  for  musical  improvisa�on  and  composi�on.  It  is 
 implemented  in  Max  and  is  based  on  a  genera�ve  model  using  a  process  similar  to  concatena�ve 
 synthesis  to  provide  stylis�cally  coherent  improvisa�on,  while  in  real-�me  listening  to  and  adap�ng 
 to a musician (or any other type of audio or MIDI source). 
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 User  or  users  may  select  an  AI  agent  as  co-creator.  The  AI  agent  will  “react”  to  the  user’s  musical 
 output  and/or  “co-improvise”  and  “co-create”.  Audio  and  MIDI  signals  from  the  user  will  be  routed 
 through  INPUTS  to  the  sensor  hub,  and  then  either  directly  to  AI  tools,  or  by  way  of  XSL  analysis  and 
 search, then on to SOMAX, or to other AI composi�on resources. 

 Audio  🡮 

 Inputs  🡪  Sensor hub 

 🡪  AI tools 

 🡪  JackTrip Outputs 
 MIDI  🡭 

 🡪  SOMAX/XSL  🡪  AI tools 

 🡪  Modula�on or accompaniment 

 2.2.2.5 AI assisted composi�on 

 Here  audio  and  MIDI  signals  from  the  user  will  be  routed  through  INPUTS  to  the  sensor  hub  and  then 
 directly  to  AI  composi�on  resources;  once  again,  this  procedure  may  include  X-System  analysis  and 
 searches. Audio inputs may also modulate or accompany AI assisted composi�on. 

 Audio  🡮 

 Inputs  🡪  Sensor hub 

 🡪  AI tools 

 🡪  JackTrip Outputs 
 MIDI  🡭 

 🡪  SOMAX/XSL  🡪  AI assisted composi�on 

 🡪  Modula�on or accompaniment 

 2.2.2.6 EEG generated composi�on 

 EEG  signals  are  routed  through  INPUTS  to  the  sensor  hub,  then  to  MODA/XSL  or  to  Brain  Stethoscope 
 for  audifica�on;  these  signals  may  be  further  routed  to  AI  composi�on  resources.  EEG  signals  may 
 also  be  directed  to  CERTH  emo�onal  iden�fica�on  AI,  and  then  on  to  mood-driven  composi�onal 
 algorithms. 

 EEG 
 signal  🡪  Inputs  🡪  Sensor hub 

 🡪  Brain stethoscope  🡪  Audifica�on  🡪  JackTrip 

 🡪  MODA (XSL)  🡭  🡮  AI tools  🡪  JackTrip outputs 

 🡪  Emo�onal 
 iden�fica�on AI  🡮  🡮  Audio/MIDI modula�on  🡪  JackTrip outputs 

 Mood driven composi�on algorithms  🡪  JackTrip outputs 

 2.2.2.7 Sensor generated composi�on 

 Sensor  signals  may  be  routed  through  INPUTS  to  the  sensor  hub  and  then  subsequently  either 
 directly  on  to  AI  tools  and/or  direct  music  genera�on  or  modula�on,  or  by  way  of  emo�onal 
 iden�fica�on  AI  and/or  the  mood  es�mator  to  mood-driven  composi�on  algorithms  such  as  CTLS’s 
 appliance of the MusicGen system, and/or XSL and SOMAX and possibly more. 

 SOMAX/XSL  🡪  JackTrip outputs 

 🡪  Emo�onal iden�fica�on AI (CERTH) 
 🡭 

 🡮 

 Sensor 
 signals  🡪  Input  🡪  Sensor hub  🡪  Mood es�mator algorithms (CTL)  🡪  Mood  driven  composi�on  algorithms  🡪  JackTrip 

 outputs 

 🡪  AI tools  🡪  JackTrip output 

 🡪  Direct genera�on and modula�on  🡪  JackTrip outputs 
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 2.2.2.8 Style/language personal selec�on 

 There  are  several  interfaces  in  the  unfolding  of  co-crea�on  procedures  where  musical  style  and 
 language  choices  may  be  made  -  in  rela�on  to  AI  tools,  AI  composi�on  resources,  Brain  stethoscope 
 and X-System searches. This se�ng will connect directly to these interfaces. 

 2.3 App Technology 

 2.3.1 Choices 
 The  WP5  team  have  explored  various  technology  choices  for  an  app  which  will  handle  sensor  data 
 collec�on,  processing,  transmission  through  JackTrip,  avatar  display,  and  hap�cs  drivers.  Below  we 
 outline  the  advantages  and  disadvantages  to  consider  for  different  choices,  as  well  as  some 
 technology op�ons. 

 Add to JackTrip's UI: 
 Pros  Cons 

 Would have just a single UI for everything  Stuck  using  their  technology  stack  (Qt  in 
 par�cular was being a pain to set up) 

 May get good support form JackTrip themselves.  Unknown accessibility op�ons 

 Need  to  be  careful  not  to  break  the  app  for 
 connec�ng to servers. 

 Will  have  to  keep  our  code  working  with 
 upda�ng versions of JackTrip 

 Electron UI: 
 Pros  Cons 

 Good, mature accessibility op�ons  Need  to  use  na�ve  plugins  for  sensor  drivers  and 
 audio  or  run  another  background  process  to  do 
 those. 

 Familiarity with the technology stack  Need to be careful about performance issues. 

 Some overhead if using WebGL vs Vulkan/etc. 

 Technology  Op�ons  for  Overall  UI  includes  Vue  JS  and  React  Na�ve  and  for  avatar  display 
 h�ps://www.babylonjs.com/  , Godot HTML export and  Godot OpenGL captured in a window. 

 Game engine UI: 
 Pros  Cons 

 Easy to develop 3D avatar op�ons quickly.  Less mature accessibility op�ons 

 Very easy to deploy cross-pla�orm.  Somewhat less suited for UI development 

 Technology Op�ons for Game engine UI includes Godot, Monogame/FNA and Unreal. 
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 Mono/.NET UI: 

 Pros  Cons 

 Rela�vely good performance  Likely worse experience on Mac 

 Easy  access  to  na�ve  code  for  audio  and  sensor 
 drivers 

 Less familiarity with it in the technical team 

 2.3.2 Recommenda�on 
 While  we  are  happy  to  receive  further  feedback  on  this  and  have  further  work  package  discussion, 
 our  current  recommenda�on  is  to  proceed  with  an  Electron  app.  The  main  drivers  for  this  are  the 
 known  and  well  tested  accessibility  features  which  should  allow  be�er  support  for  the  many  ways 
 people use computers, as well as our developers' familiarity with the web technologies used in it. 

 Page |  16 

DRAFT



 3.  Demonstra�ons 
 3.1 JackTrip Channels (XSL) 

 JackTrip  1  was  originally  developed  at  CCRMA  Stanford  University,  but  as  part  of  MuseIT,  is  now 
 adapted  for  the  purposes  of  the  co-crea�on  pla�orm  (as  reported  in  D5.10).  The  WP5  team  are 
 currently  in  the  process  of  adding  the  signal  channel  layer  to  JackTrip  which  will  allow  sensor  and 
 hap�c  data  to  be  communicated  together  with,  and  at  the  same  speed  as,  JackTrip  low-latency, 
 co-crea�on data. 

 At  the  core  of  the  co-crea�on  pla�orm  is  the  ability  for  users  to  send  and  receive  biological  sensor 
 data  in  real  �me,  and  at  low  latency.  The  current  plan  is  to  do  this  by  encoding  the  data  into  the 
 music signal that is already sent and received at low latency over JackTrip. 

 Various  different  encoding  op�ons  were  explored,  including  Amplitude  Modula�on  (AM)  and 
 Quadrature  Amplitude  Modula�on  (QAM)  of  a  carrier  tone,  as  well  as  simply  up-sampling  and  adding 
 low frequency sensor data (such as ECG) directly into the music signal. 

 All  three  of  these  methods  were  demonstrated  to  work  locally,  meaning  we  were  able  to  encode 
 addi�onal  data  into  a  music  signal  then  read  out  the  data  and  the  music  without  the  la�er  being 
 significantly altered on a single machine. 

 The  next  step  was  to  get  this  working  over  JackTrip.  JackTrip  is  built  on  top  of  JACK  2  (Jack  Audio 
 Connec�on  Kit),  which  is  a  sound  server  API.  Using  an  open-source  JACK  client  for  Python,  3  we  were 
 able  to  pass  our  carrier  tones  (carrying  encoded  sensor  data)  into  JackTrip  and  read  them  back  out 
 into  Python  on  another  machine.  Due  to  our  remote  work  situa�on,  we  were  able  to  test  this  process 
 between Zagreb (Croa�a) and Edinburgh (Scotland). 

 Various  encoding/decoding  methods,  as  men�oned  above  (AM,  QAM,  direct  signal  addi�on)  over 
 JackTrip,  have  been  tested.  During  the  par�cipatory  session,  11-12th  of  March  2024,  in  Gothenburg, 
 we  were  able  to  send  an  ECG  signal  in  real-�me  into  JackTrip,  via  JACK,  and  have  that  data  decoded 
 and  transmi�ed  to  a  hap�c  receiver  connec�ng  to  a  different  machine.  Images  and  further  outlining 
 of  the  session  are  included  in  chapter  4,  User  engagement  and  prototype  tes�ng.  This  served  as  a 
 star�ng point for our explora�on into using sensor data in conjunc�on with music in real �me. 

 3.2 Affec�ve Compu�ng Framework service for Music (ACF-Music) (CERTH) 

 The  Affec�ve  Compu�ng  Framework  service  for  Music  (ACF-Music)  currently  under  development  by 
 CERTH  comprises  a  grouping  of  AI  emo�onal  recogni�on  algorithms.  Results  are  plo�ed  on  Russell's 
 two-dimensional  valence-arousal  space  model,  serendipitously  the  same  approach  as  XSL.  An 
 important  sensor  input  is  Galvanic  Skin  Response  (GSR)  measuring  galvanic  conductance  across  the 
 surface  of  the  skin,  dependent  on  sweat  glands  -  arousal  leads  to  increased  gland  ac�vity,  more 
 moisture  and  higher  conductance;  counter-arousal  leads  to  reduced  ac�vity,  drier  skin  and  less 
 conductance. 

 The  team  performed  tests  on  15  subjects  using  an  Empa�ca  E4  wristwatch-like  wearable.  A  median 
 filter  was  used  to  eliminate  artefacts,  and  minmax  normalisa�on  to  account  for  individual  differences. 
 The  GSR  �me  series  were  grouped  in  30  second  windows,  and  sta�s�cal  metrics  extracted  from  15 

 3  h�ps://jackclient-python.readthedocs.io/en/0.5.4/ 

 2  h�ps://jackaudio.org/ 

 1  h�ps://www.jacktrip.com/ 
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 features.  A  machine  learning  algorithm  -  a  Support  Vector  Machine  with  an  RBF  kernel  -  was 
 employed to classify features extracted from GSR in the form of arousal es�ma�on. 

 To  facilitate  real-�me  monitoring,  the  Lab  Streaming  Layer  (LSL)  system  was  used.  LSL  is  a 
 comprehensive  system  designed  for  gathering  measured  �me  series  data  in  research  se�ngs, 
 encompassing  networking,  �me  synchronisa�on,  real-�me  access,  and  op�onally  centralised  data 
 collec�on, viewing, and disk recording. 

 For a full descrip�on see Appendix 1 

 3.3. Mood es�ma�on (CTL) 
 For  mood  es�ma�on  the  CTL  team  chose  to  develop,  train  and  validate  a  model  based  on  Facial 
 Emo�on  Recogni�on  (FER).  Since  MuseIT  is  concerned  with  inclusiveness  and  involves  VR 
 Technologies,  they  also  decided  to  focus  on  developing  a  parallel  version  of  the  algorithm  that  could 
 be  employed  for  faces  occluded  by  VR  headsets  or  other  eyewear  that  are  used  by  the  visually 
 impaired. 
 The  team  collected  50,000  online  images  of  emo�onally  expressive  faces.  Because  of  inevitable 
 imbalances  in  representa�ons  of  individual  emo�ons,  the  team  chose  to  focus  on  three  emo�ons: 
 “happy”, “sad” and “neutral”. 

 For  the  development  of  the  Mood  Es�ma�on  Algorithm  (MEA)  the  team  chose  the  Mini-Xcep�on 
 deep  learning  model  which  combines  predic�on  accuracy  with  negligible  inference  latency  and  makes 
 use  of  residual  modules  and  depth-wise  separable  convolu�ons.  It  also  has  limited  parameters 
 (54,000 trainable parameters overall) and the final model’s size is only a few megabytes. 

 For a full descrip�on see Appendix 2 

 3.4 Stress es�ma�on (CTL) 

 The  Catalink  team  also  worked  with  es�ma�on  of  stress  levels  of  individuals  using  an 
 electrocardiogram  (ECG)  signal,  based  on  the  inter-beat-intervals  (IBIs)  and  the  HRV  metric.  The 
 extracted  features  were  used  to  train  and  evaluate  a  Machine  Learning  (ML)  model  to  accurately 
 predict the stress levels of the individuals concerned. 

 For a full descrip�on see Appendix 3 

 3.5  Neurophysiological predic�on (XSL) 
 X-System  is  a  computa�onal  model  of  the  musical  brain  that  can  predict  the  neurophysiological 
 effects  of  music,  and  how  moment-by-moment  the  music  will  ac�vate  the  autonomic  nervous  system, 
 endocrine  system,  auditory  cortex,  motor  cortex  and  brainstem  by  XSL.  It  also  calculates  arousal  and 
 valence  and  plots  values  on  the  same  circle  as  the  CERTH  system,  with  the  addi�on  of  colour  coding. 
 As  opposed  to  inducing  emo�on  or  es�ma�ng  mood  in  the  co-creators.  X-System  predicts  these 
 values  in  the  music  itself.  This  provides  a  very  direct  feed  of  emo�onal  informa�on  between 
 co-creators and a simple basis for avatar genera�on. 

 For a full descrip�on see Appendix 4 
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 3.6  EEG Audifica�on (XSL) 
 XSL  has  also  developed  a  way  of  audifying  EEG.  Which  will  have  two  func�ons  in  the  pla�orm:  to 
 audify  individual’s  EEG  as  a  form  of  self-expression,  as  the  “music  of  the  brain”  itself,  and  to  use 
 X-System  to  search  the  world  repertoire  for  exis�ng  music  closest  to  the  electrical  ac�vity  of  the 
 co-creator’s  brain.  This  music  can  then  become  rich  material  for  AI  assisted  crea�vity.  The  EEG  is 
 processed  through  wavelet  correla�ons  and  ridge  extrac�on,  and  the  resul�ng  “score”  transposed  to 
 the domain of audi�on. 

 For a full descrip�on see Appendix 5 
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 4. User-engagement and prototype tes�ng 
 The aim of this par�cipatory workshop was: 

 1.  to  work  with  poten�al  users  making  use  of  heart  rate  sensors  to  evaluate  to  what  extent  heart  rate 
 signals  may  be  of  use  in  the  communica�on  of  states  of  mind  and  body  between  co-creators  both 
 in proximity and remote. 

 2.  To  work  with  users  to  evaluate  the  effec�veness  and  comfort  of  hap�c  signals  in  the 
 communica�on of heart rate and other vibra�onal informa�on. 

 3.  To  begin  the  process  of  designing  “avatars”  which  will  be  visual  representa�ons  of  human  states  of 
 mind and body to assist in emo�onal communica�on within the process of remote co-crea�on. 

 The  use  of  heart  beat  audifica�ons  proved  to  be  very  effec�ve  in  the  communica�on  of  emo�ons  and 
 states  of  mind  and  body  between  co-creators.  Par�cipants  iden�fied  the  emo�ons  embodied  in  heart 
 beats  and  reacted  in  crea�ve  and  inven�ve  ways.  There  were  strong  crea�ve  and  emo�onal  reac�ons 
 to  a  heart  beat  made  audible  in  the  room.  The  single  hap�c  actuator  was  very  successful.  Par�cipants 
 felt  that  they  were  in  “in�mate”  contact  with  their  co-creators.  Good  progress  was  made  on  the 
 design of avatars. 

 For a full descrip�on see Appendix 6 
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 5. Next steps and future work 
 To  summarise,  we  are  on  schedule,  and  have  made  good  progress  in  rela�on  to  the  correla�ons  with 
 other  Work  Packages,  Deliverables  etc.  This  ini�al  phase  of  development  has  involved  work  on 
 individual  layers  “in  parallel”.  Now  we  are  moving  into  integra�on  and  the  ar�cula�on  of  the 
 architecture as a whole. Next steps include amongst other things: 

 -  Sensor  data  encoding  and  a  proof-of-concept  for  sending  this  data  through  JackTrip  has  been 
 done, further work is needed on improved encoding, phase locking and latency reduc�on. 

 -  CTL  is  working  on  further  improving  their  mood  es�ma�on  model  as  well  as  to  evaluate  its 
 effec�veness during actual use-case scenarios. 

 -  The  integra�on  of  CTL  algorithms  into  XSL’s  technologies  has  started.  A  packaged  version  of 
 the Mood Es�ma�on Algorithm has been delivered to XSL who are working to run and test it. 

 -  CTL  aim  to  collect  more  data  during  our  experiment  sessions,  with  the  PolarH10  sensor.  The 
 purpose  is  to  incorporate  some  of  the  PolarH10  records  into  the  training  dataset,  aiming  to 
 improve the performance accuracy of our classifier. 

 -  CTL  will  experiment  with  more  ML  algorithms  models,  in  order  to  find  the  best  performing 
 model. 

 -  CERTH  aim  to  extend  the  research  toward  emo�on  recogni�on  by  incorpora�ng  sensor 
 signals  into  the  pipeline.  In  par�cular,  a  mul�modal  approach  is  feasible  by  integra�ng  these 
 diverse  sensor  modali�es,  thereby  enhancing  the  accuracy  and  robustness  of  the  emo�on 
 recogni�on system. 

 -  CERTH  will  examine  each  modality  to  determine  which  is  be�er  suited  for  detec�ng  specific 
 emo�onal  states  and  explore  methods  for  effec�vely  combining  their  outputs.  This 
 comprehensive  analysis  will  contribute  to  refining  the  approach  and  op�mising  the 
 performance of the emo�on recogni�on system. 

 -  CERTH’s  emo�on  recogni�on  analysis  (ACF-Music  service)  will  be  integrated  into  the  WP5 
 dashboard. 

 -  More  discussion  and  decisions  on  EEG  will  take  place  in  the  coming  months,  by  autumn  we 
 hope  to  be  able  to  have  started  integra�ons  of  EEG  and  have  a  prototype  EEG  layer  up  and 
 running.  

 -  In  April  we  aim  to  have  another  par�cipatory  session  where  we  can  engage  users  to  evaluate 
 and further design the developments. 

 -  Planning has started for the pilot demonstra�ons and ar�s�c ideas are being brainstormed. 

 -  Integra�on of data into the Repository (T6.4) is being discussed. 
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 APPENDIX  1  -  Affec�ve  Compu�ng  Framework  service  for  Music 
 (ACF-Music) (CERTH) 
 A1.1 Summary 

 The  sensor  diagnos�cs  layer  includes  an  emo�on  induc�on  system  designed  by  CERTH,  whereby  data 
 from  a  variety  of  sensors  is  combined  to  induce  the  mood  of  the  user,  and  ul�mately,  a)  to  convey  this 
 emo�onal  informa�on  to  co-creators,  as  well  as  b)  to  support  individual  crea�ve  self-expression.  In 
 both  of  these  func�ons  CERTH  diagnos�cs  will  be  combined  with  CTL  and  XSL  diagnos�cs.  The 
 induc�on  in  itself  requires  mul�ple  layers  within  layers,  with  sensor  inputs  including  HR,  HRV,  BVP, 
 EEG, temperature, accelerometer etc. 

 A1.2 Background 

 Emo�ons  play  a  significant  role  in  decision-making  mechanisms  and  percep�on  of  individuals. 
 Affec�ve  compu�ng  and  emo�on  recogni�on  technologies  encompass  a  diverse  array  of  devices  and 
 systems  designed  to  perceive,  understand,  and  respond  to  human  emo�ons.  4  These  technologies 
 employ  a  variety  of  methods,  including  physiological  signals  monitoring,  facial  expression  analysis, 
 speech  recogni�on,  and  natural  language  processing,  to  discern  the  emo�onal  states  of  individuals, 
 revolu�onizing  the  way  we  engage  and  understand  human  emo�ons.  5  Physiological  signals,  such  as 
 EEG,  GSR,  and  BVP,  have  been  widely  used  in  the  area  of  human  emo�on  recogni�on  as  they  are 
 directly influenced by the autonomic nervous system (ANS), which responds to emo�onal s�muli.  6 

 Music  is  recognized  across  cultures  as  a  powerful  s�mulus  for  evoking  emo�ons  and  influencing 
 mood.  In  par�cular,  its  impact  on  brain  structures  associated  with  emo�on  regula�on  reveals  a  close 
 connec�on  between  human  emo�ons  and  music.  7  These  connec�ons  may  even  offer  promising  paths 
 for  therapeu�c  interven�ons  in  psychiatric  and  neurological  disorders.  Interes�ngly,  given  that  music 
 influences  physiological  reac�ons,  it  has  a  profound  impact  on  emo�onal  contagion.  For  example, 
 happy music triggers. 

 the  zygoma�c  muscle  responsible  for  smiling,  with  an  increase  in  skin  conductance  and  breathing 
 rate,  while  sad  music  ac�vates  the  corrugator  muscle.  8  Toward  this  end,  the  detec�on  of  emo�ons 
 evoked  during  co-crea�on  performances  in  the  MuseIT  project  will  play  a  vital  role  in  the 
 development  of  interac�ve  musical  experiences  tailored  to  individual  emo�onal  states  and  facilita�ng 
 meaningful  interac�ons  among  co-creators.  This  integra�on  of  emo�on  recogni�on  technology 
 within  the  MuseIT  project  not  only  enables  real-�me  monitoring  and  understanding  of  par�cipants' 
 emo�onal  states  but  also  contributes  to  the  development  of  personalized  and  emo�onally  engaging 
 co-crea�ve  experiences.  By  leveraging  the  insights  gained  from  the  sensor  diagnos�cs  layer,  including 
 the  emo�on  recogni�on  system  by  CERTH,  a  dynamic  and  responsive  environment  will  be  created 
 where emo�ons serve as valuable cues for guiding the crea�ve direc�on. 

 AI algorithms for emo�on recogni�on 

 Research  in  the  field  of  emo�on  recogni�on  with  physiological  signals  is  focused  on  exploring  the 
 connec�on  between  various  physiological  signals  and  emo�ons,  selec�ng  the  appropriate  s�muli  to 
 induce  several  emo�onal  states,  and  developing  AI  algorithms  for  extrac�ng,  selec�ng,  and  classifying 

 8  Schaefer, H. E. (2017). Music-evoked emo�ons—Current studies.  Fron�ers in neuroscience  ,  11  , 600. 

 7  Koelsch, S. (2014). Brain correlates of music-evoked emo�ons. Nature Reviews Neuroscience, 15(3), 170-180 

 6  Egger,  M.,  Ley,  M.,  &  Hanke,  S.  (2019).  Emo�on  recogni�on  from  physiological  signal  analysis:  A  review.  Electronic  Notes  in  Theore�cal 
 Computer Science, 343, 35-55. 

 5  Alhee�,  A.  A.  M.,  Salih,  M.  M.  M.,  Mohammed,  A.  H.,  Hamood,  M.  A.,  Khudhair,  N.  R.,  &  Shakir,  A.  T.  (2023,  November).  Emo�on 
 Recogni�on  of  Humans  using  modern  technology  of  AI:  A  Survey.  In  2023  7th  Interna�onal  Symposium  on  Innova�ve  Approaches  in  Smart 
 Technologies (ISAS) (pp. 1-10). IEEE. 

 4  Picard, R. W. (2000).  Affec�ve compu�ng  . MIT press 
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 representa�ve  signal  features.  9  Russell's  two-dimensional  valence-arousal  space  model  provides  a 
 quan�ta�ve  framework  for  understanding  emo�ons.  10  Typically,  valence  is  plo�ed  along  the 
 horizontal  axis,  ranging  from  posi�ve  to  nega�ve,  while  arousal  is  represented  on  the  ver�cal  axis, 
 ranging  from  low  to  high  (Figure  2).  Valence  reflects  the  degree  of  pleasantness  or  unpleasantness, 
 while  arousal  indicates  the  level  of  ac�va�on.  For  the  scope  of  the  MuseIT  project,  AI  algorithms  for 
 recognizing  emo�ons  will  be  developed,  mapping  the  physiological  reac�ons  of  par�cipants  to  the 
 valence-arousal  space.  Furthermore,  a  process  is  established  to  gather  physiological  data  from 
 sensors,  analyze  the  data,  and  deliver  real-�me  quan�ta�ve  indicators  of  emo�onal  states.  We  will 
 refer  to  this  system  as  the  Affec�ve  Compu�ng  Framework  service  for  Music  (ACF-Music).  While  the 
 emphasis  of  this  demonstra�on  lies  on  the  GSR  signal  and  arousal  detec�on,  the  procedural  steps  for 
 handling  the  physiological  signals  targeted  for  inclusion  in  the  MuseIT  project  remain  consistent.  The 
 steps for conduc�ng this online analysis are outlined below. 

 Figure 2:  The 2-D valence-arousal space model for  emo�ons 

 A1.3 GSR signal pre-processing and feature extrac�on 
 GSR,  or  galvanic  skin  response,  refers  to  the  measurement  of  skin's  electrical  conduc�vity,  which 
 fluctuates  in  response  to  changes  in  sweat  gland  ac�vity  regulated  by  the  ANS.  Research  indicates  a 
 direct  correla�on  between  emo�onal  arousal  and  an  increase  in  skin  conduc�vity,  as  demonstrated  in 
 previous  studies.  11  GSR  signals  from  15  subjects  in  the  WESAD  benchmark  dataset  recorded  with  the 
 wearable  Empa�ca  E4  are  u�lized  in  this  implementa�on.  12  Our  decision  was  influenced  by  the 
 lightweight  and  unobtrusive  nature  of  Empa�ca,  a  device  we  have  also  used  for  our  data  collec�on 
 experiments  (see  also  D4.2).  In  par�cular,  we  employ  a  median  filter  for  elimina�ng  ar�facts 
 generated  mainly  from  subjects'  movements,  and  the  minmax  normaliza�on  is  used  for  each  subject 
 in  the  dataset  to  account  for  individual  differences  providing  subject-independent  generalized  results. 
 Next,  GSR  �me  series  are  grouped  into  30-second  windows  with  50%  overlap.  Based  on,  15  features 

 12  Schmidt,  P.,  Reiss,  A.,  Duerichen,  R.,  Marberger,  C.,  &  Van  Laerhoven,  K.  (2018,  October).  Introducing  wesad,  a  mul�modal  dataset  for 
 wearable stress and affect detec�on. In Proceedings of the 20th ACM interna�onal conference on mul�modal interac�on (pp. 400-408). 

 11  Domínguez-Jiménez,  J.  A.,  Campo-Landines,  K.  C.,  Mar�nez-Santos,  J.  C.,  Delahoz,  E.  J.,  &  Contreras-Or�z,  S.  H.  (2020).  A  machine  learning 
 model for emo�on recogni�on from physiological signals. Biomedical signal processing and control, 55, 101646. 

 10  Basu,  S.,  Jana,  N.,  Bag,  A.,  Mahadevappa,  M.,  Mukherjee,  J.,  Kumar,  S.,  &  Guha,  R.  (2015).  Emo�on  recogni�on  based  on  physiological 
 signals using valence-arousal model. In 2015 Third Interna�onal Conference on Image Informa�on Processing (ICIIP) (pp. 50-55). IEEE. 

 9  Zhang,  J.,  Yin,  Z.,  Chen,  P.,  &  Nichele,  S.  (2020).  Emo�on  recogni�on  using  mul�-modal  data  and  machine  learning  techniques:  A  tutorial 
 and review.  Informa�on Fusion  ,  59  , 103-126. 
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 are  extracted:  sta�s�cal  metrics  like  the  mean  value  (SCL_mean  and  SCR_mean),  the  standard 
 devia�on  (SCL_std  and  SCR_std),  the  minimum  (SCL_min  and  SCR_min),  the  maximum  (SCL_max  and 
 SCR_max),  linear  combina�on  of  these  ((SCL_max-SCL_min)  and  (SCR_max-SCR_  min)),  mean  value  of 
 the  first  and  second  deriva�ve  of  the  SCL  (respec�vely  SCL_dot  and  SCL_ddot)  and  the  number  and 
 amplitude  of  the  SCR  signal  peaks.  13  We  employ  a  machine  learning  algorithm,  a  Support  Vector 
 Machine  with  a  RBF  kernel,  for  classifying  the  features  extracted  from  GSR  into  levels  of  arousal 
 es�ma�on,  in  a  subject-independent  manner  by  using  Leave-One  Subject-Out  Cross-Valida�on 
 (LOOCV)  during  training.  We  opted  for  SVM  primarily  because  of  the  rela�vely  modest  size  of  the 
 dataset.  SVMs  are  recognized  for  their  strong  performance  with  small  sample  sizes  and  their  reduced 
 suscep�bility  to  overfi�ng  compared  to  alterna�ve  classifica�on  algorithms.  Furthermore,  SVMs 
 inherently  operate  as  binary  classifiers,  aligning  well  with  the  nature  of  our  arousal  classifica�on  task. 
 The  model  achieved  93.22%  in  terms  of  accuracy  in  the  predic�on  of  the  binary  stress  classifica�on 
 task.  Finally, the trained model is developed and employed for real-�me analysis. 

 A1.4 Real-�me emo�on monitoring 
 To  facilitate  real-�me  monitoring,  the  Lab  Streaming  Layer  (LSL)  system  is  used.  14  LSL  is  a 
 comprehensive  system  designed  for  gathering  measured  �me  series  data  in  research  se�ngs, 
 encompassing  networking,  �me  synchroniza�on,  real-�me  access,  and  op�onally  centralized  data 
 collec�on,  viewing,  and  disk  recording.  The  liblsl  library  15  offers  abstrac�ons  for  client  programs, 
 including  Resolvers  to  iden�fy  available  streams  on  the  lab  network,  Outlets  to  make  �me  series  data 
 streams  accessible,  and  Inlets  to  receive  data  from  subscribed  Outlets.  Informa�on  about  the  stream 
 is  transmi�ed  as  XML  data  along  with  the  raw  data.  LabRecorder,  the  default  recording  so�ware 
 bundled  with  LSL,  facilitates  recording  mul�ple  streams  from  the  lab  network  into  a  single  file  while 
 ensuring �me synchroniza�on. 
 In  the  real-�me  emo�on  recogni�on  system  for  MuseIT,  the  par�cipants  will  wear  lightweight, 
 unobtrusive  sensors  for  capturing  their  physiological  reac�ons.  CERTH  employs  the  Empa�ca  E4 
 wearable  wristband  in  order  to  record  the  GSR  data  (Figure  3).  LSL  library  is  responsible  for  streaming 
 data  from  Empa�ca  via  Bluetooth  connec�on  to  a  local  computer.  The  signals  are  captured  every  15 
 seconds,  stored  in  a  30-second  buffer,  and  subjected  to  a  median  filter  with  a  5-second  kernel. 
 Following  this,  the  signals  are  normalized,  and  a  feature  vector  comprising  the  aforemen�oned  15 
 features  is  generated.  The  trained  subject-independent  model  developed  predicts  the  levels  of 
 arousal  state  by  compu�ng  probabili�es  of  possible  SVM  outcomes  in  the  [0  1]  range.  This  indicates 
 that  the  closer  the  outcome  is  to  1,  the  higher  the  arousal  level  of  the  individual.  Finally,  the  buffer  is 
 updated  with  new  15-second  samples  from  the  stream,  the  oldest  are  discarded  and  an  arousal  state 
 is predicted. The pipeline is depicted in Figure 4. 

 Figure 3:  Empa�ca E4 wearable 

 15  h�ps://github.com/labstreaminglayer/pylsl 

 14  h�ps://labstreaminglayer.readthedocs.io/info/intro.html Accessed: 07/02/2024 

 13  Ci�adini,  R.,  Taman�ni,  C.,  Sco�o  di  Luzio,  F.,  Laure�,  C.,  Zollo,  L.,  &  Cordella,  F.  (2023).  Affec�ve  state  es�ma�on  based  on  Russell’s 
 model and physiological measurements. Scien�fic Reports, 13(1), 9786. 
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 Figure 4:  The pipeline for real-�me arousal levels  detec�on 
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 APPENDIX 2 - Mood Es�ma�on - Catalink 

 A2.1 Literature and overview 
 The  area  of  Computer  Vision  (CV)  and  its  applica�ons  around  mood  es�ma�on  have  gained 
 significant  a�en�on  over  the  years.  The  Cohn-Kanade  database,  introduced  in  2000,  kickstarted  the 
 Automa�c  Facial  Expression  Recogni�on  algorithms  development.  16  Ini�ally,  emo�on  recogni�on  was 
 mostly  based  on  the  rule-based  methodology  of  Facial  Ac�on  Coding  System  (FACS),  which  used 
 specific  facial  muscle  movements,  called  Ac�on  Units,  to  iden�fy  emo�ons.  17  However,  these  early 
 rule-based  methods  were  limited  in  accuracy,  due  to  their  inability  to  capture  the  richness  and 
 complexity of human facial expressions. 
 Subsequently,  tradi�onal  machine  learning  techniques,  involving  face  detec�on,  facial  landmark 
 extrac�on,  and  feature  engineering,  gained  prominence.  Researchers  like  Ma�hew  Day,  have  used 
 various  Machine  Learning  (ML)  methods  like  Support  Vector  Machines  (SVM)  and  Gradient  Boos�ng 
 for automa�c emo�on classifica�on.  18 

 Despite  the  major  improvements  in  accuracy,  the  above-men�oned  methods  required  labor-intensive 
 feature  design,  o�en  leading  to  bias  and  inefficiency.  Deep  Learning  then  emerged,  offering 
 end-to-end  processing  of  facial  images,  with  automa�c  feature  extrac�on  which  is  learned  through 
 the  training  on  large  volumes  of  annotated  images.  Consequently,  the  advent  of  deep  learning 
 models  significantly  reduced  �me  and  effort  in  model  design  and  training.  Techniques  like 
 Convolu�onal  Neural  Networks  (CNNs)  and  Recurrent  Neural  Networks  (RNNs)  have  even  surpassed 
 human-level accuracy in emo�on recogni�on. 
 For  example,  Demochkina  et  al.  proposed  a  video-based  emo�on  recogni�on  using  MobileNet  and 
 SVM.  19  Youyi  Chai  et  al.  20  and  Yin  Fan  et  al.  21  combined  CNNs  and  RNNs  for  video  emo�on  recogni�on, 
 while  M.  S.  Hossain  et  al.  22  used  2D  and  3D  CNNs  for  audio-visual  emo�on  detec�on,  also  applying  a 
 3D  CNN  in  healthcare  for  monitoring  pa�ent  emo�ons.  These  developments  represent  significant 
 strides in computer vision-based mood es�ma�on. 
 For  our  work,  based  on  the  task’s  requirements,  a  model  appropriate  for  performing  Facial  Emo�on 
 Recogni�on  (FER)  should  be  developed,  trained,  and  validated.  Foremost,  we  assessed  the  possibility 
 of  reusing  a  pre-trained  model  for  FER.  But  bearing  in  mind  the  mixed  nature  and  variety  of  sources 
 of  our  dataset,  as  well  as  the  inten�on  to  refining  the  model  by  modifying  the  data  and  adjus�ng  the 
 model’s  weights  for  further  fine-tuning  in  distrac�ng  scenarios  such  as  par�al  occlusion,  a 
 custom-developed  model  was  deemed  more  appropriate  to  meet  our  specific  requirements  and 
 objec�ves.  In  addi�on,  since  the  use-cases  and  requirements  of  the  project  involve  inclusiveness  and 
 VR  technologies,  we  decided  to  also  focus  on  developing  another  version  of  the  algorithm  that  could 
 be  employed  for  faces  occluded  by  VR  headsets  or  other  eyewear  that  are  used  by  visually  impaired 
 individuals.  Specifically,  the  requirements  for  the  proposed  models  are  to  be  lightweight,  fast  during 

 22  Hossain,  M.  S.,  &  Muhammad,  G.  (2019).  Emo�on  recogni�on  using  deep  learning  approach  from  audio–visual  emo�onal  big 
 data.   Informa�on Fusion  ,   49  , 69-78. 

 21  Fan,  Yin,  et  al.  "Video-based  emo�on  recogni�on  using  CNN-RNN  and  C3D  hybrid  networks."   Proceedings  of  the  18th  ACM  interna�onal 
 conference on mul�modal interac�on  . 2016. 

 20  Cai,  Y.,  Zheng,  W.,  Zhang,  T.,  Li,  Q.,  Cui,  Z.,  &  Ye,  J.  (2016).  Video  based  emo�on  recogni�on  using  CNN  and  BRNN.  In   Pa�ern  Recogni�on: 
 7th Chinese Conference, CCPR 2016, Chengdu, China, November 5-7, 2016, Proceedings, Part II 7   (pp. 679-691).  Springer Singapore. 

 19  D  emochkina,  P.,  &  Savchenko,  A.  V.  (2021).  MobileEmo�Face:  Efficient  facial  image  representa�ons  in  video-based  emo�on  recogni�on  on 
 mobile  devices.  In   Pa�ern  Recogni�on.  ICPR  Interna�onal  Workshops  and  Challenges:  Virtual  Event,  January  10–15,  2021,  Proceedings,  Part 
 V   (pp. 266-274). Springer Interna�onal Publishing. 

 18  Anderson,  K.,  &  McOwan,  P.  W.  (2006).  A  real-�me  automated  system  for  the  recogni�on  of  human  facial  expressions.   IEEE  Transac�ons 
 on Systems, Man, and Cyberne�cs, Part B (Cyberne�cs)  ,   36  (1),  96-105. 

 17  Ekman, P., & Friesen, W. V. (1978). Facial ac�on  coding system.   Environmental Psychology & Nonverbal  Behavior  . 

 16  Lucey,  P.,  Cohn,  J.  F.,  Kanade,  T.,  Saragih,  J.,  Ambadar,  Z.,  &  Ma�hews,  I.  (2010,  June).  The  extended  cohn-kanade  dataset  (ck+):  A 
 complete  dataset  for  ac�on  unit  and  emo�on-specified  expression.  In 2010  ieee  computer  society  conference  on  computer  vision  and 
 pa�ern recogni�on-workshops (pp. 94-101). IEEE. 
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 inference,  and  demonstrate  good  performance  on  mood  es�ma�on  tasks,  including  cases  of  par�ally 
 occluded faces. 

 A2.2 Dataset and Simulated occlusion 
 As  previously  men�oned,  FER  is  known  for  its  complex  nature,  due  to  the  human  face's  capability  to 
 create  thousands  of  expressions  using  43  different  facial  muscles.  This  complexity  is  compounded  by 
 individual  differences  in  facial  characteris�cs  and  expression  styles.  Addi�onally,  the  effec�veness  of  a 
 Computer  Vision  algorithm  is  heavily  influenced  by  its  training  dataset.  Obtaining  a  representa�ve 
 training  set  typically  requires  gathering  many  thousands  of  images,  a  process  that  is  both 
 labor-intensive and computa�onally demanding. 

 Data collec�on for Facial Emo�on Recogni�on 

 For  construc�ng  our  dataset,  we  included  mul�ple  and  various  facial  expressions  within  each  emo�on 
 category,  in  order  to  create  a  dataset  that  well-represents  the  different  human  facial  expressions. 
 Facial  images  are  difficult  to  find  available  online,  due  to  the  strict  copyright  licences.  For  that  reason, 
 our  images  were  gathered  from  online  resources  that  provided  copyright-free  images,  such  as  Kaggle 
 (FER  2013)  23  ,  dataset  Jafar  Hussain  Human  emo�ons  24  dataset  and  other  open-source  databases  such 
 as Unsplash,  25  Pexels,  26  and Pixabay.  27 

 By  amalgama�ng  images  from  these  diverse  datasets,  our  ini�al  image  collec�on  comprises  roughly 
 50,000  images  of  facial  expressions,  which  are  categorized  into  seven  emo�on  classes  (‘angry’, 
 ‘disgusted’,  ‘scared’,  ‘happy’,  ‘sad’,  ‘surprised’,  ‘neutral’).  Some  examples  for  the  different  emo�on 
 classes  are  depicted  in  Figure  1.  The  categories  have  unequal  amounts  of  instances,  making  the 
 dataset  highly  imbalanced.  Due  to  MuseIT’s  purposes,  we  decided  to  focus  on  the  three  most  basic 
 emo�ons,  i.e.  ‘happy’,  ‘sad’,  and  ‘neutral’,  and  for  that  reason,  we  grouped  the  rest  categories  into  a 
 fourth class, named ‘other’. 

 Figure 5  : Examples of the FER-2023 

 Data collec�on for Facial Emo�on recogni�on for par�ally occluded faces 

 For  the  version  of  the  algorithm  that  is  designed  to  work  for  par�ally  occluded  faces,  we  developed 
 an  alternated  version  of  the  dataset.  To  obtain  representa�ve  image  instances  which  are  iden�cal  to 
 occluded  faces,  a  preprocessing  procedure  was  performed.  Analy�cally,  the  collected  images  were 
 adjusted  to  our  new  task,  by  occluding  the  upper  part  of  the  face  (i.e.  the  eyes  and  parts  of  the 
 forehead  and  nose),  inspired  by  the  methodology  originally  proposed  by  Rodrigues  et  al.  28  Ini�ally, 
 the  preprocessing  algorithm  uses  a  Mul�-task  Cascade  Convolu�onal  Neural  Network  (MTCNN)  to 
 detect  five  facial  landmarks  (two  for  the  center  of  each  eye,  one  for  the  nose  centre  and  two  for  the 

 28  Rodrigues,  A.  S.  F.,  Lopes,  J.  C.,  Lopes,  R.  P.,  &  Teixeira,  L.  F.  (2022,  October).  Classifica�on  of  facial  expressions  under  par�al  occlusion  for 
 VR  games.  In   Interna�onal  Conference  on  Op�miza�on,  Learning  Algorithms  and  Applica�ons   (pp.  804-819).  Cham:  Springer  Interna�onal 
 Publishing. 

 27  h�ps://pixabay.com/vectors 

 26  h�ps://www.pexels.com/search/fac 

 25  h�ps://unsplash.com 

 24  h�ps://www.kaggle.com/jafarhussain786/dataset 

 23  h�ps://www.kaggle.com/datasets/msambare/fer2013 
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 right  and  le�  side  of  the  mouth).  29  Based  on  the  detected  eye  and  nose  landmarks,  as  well  as  the 
 distances  specified  by  the  algorithm  suggested  by  Rodrigues  et  al.  (2022)  a  rectangle  is  drawn  on  top 
 of  each  image.  Therefore,  the  upper  part  of  the  faces  is  hidden,  simula�ng  in  such  a  way  the  inclusion 
 of  VR  headsets.  An  example  of  a  pair  that  consists  of  an  image  and  its  occluded  version  is  elucidated 
 in Figure 6.  More informa�on regarding the Occlusion  process can be found in CTL’s work.  30 

 Figure 6  : Occlusion Process 

 A2.3 Experiments and Model’s Architecture 
 For  the  development  of  the  Mood  Es�ma�on  Algorithm  (MEA),  we  analyzed  various  state-of-the-art 
 deep  learning  models,  focusing  on  those  suitable  for  lightweight  and  embedded  vision  applica�ons. 
 Our  experiments  involved  models  like  MobileNetV2,  31  MobileNetV3,  32  and  mini-Xcep�on.  33  S  everal 
 different  architectures  and  hyper-parameter  combina�ons  have  been  evaluated  and  assessed  with 
 regards to both their predic�on accuracy and latency for real-�me inferences. 
 Mini-Xcep�on  emerged  as  the  most  appropriate  since  it  demonstrates  great  predic�on  accuracy  and 
 negligible  inference  latency  for  real-�me  applica�ons.  Its  success  lies  in  two  main  features:  the  use  of 
 residual  modules  and  depth-wise  separable  convolu�ons.  Due  to  the  characteris�cs  and  architecture 
 of  mini-Xcep�on,  the  number  of  parameters  is  significantly  reduced,  ending  up  with  an  overall  of 
 ∼  54,000  trainable  parameters.  Lastly,  the  final  model’s  size  is  only  a  few  megabytes,  less  than  a  MB  in 
 size,  so  it  can  seamlessly  be  deployed  and  run  even  on  some  hardware-constrained  devices.  More 
 informa�on regarding our chosen  model can be found  in CTL work.  34 

 The  architecture  of  mini-Xcep�on  starts  with  two  Convolu�on  layers  (which  are  followed  by  Batch 
 Normaliza�on  and  ReLU  layer),  followed  by  four  residualblocks.  Each  block  contains  a  convolu�on 
 layer  on  the  skip  connec�on  side,  and  the  other  side  consists  of  two  separable  convolu�ons  followed 
 by  a  Max  Pooling  layer.  All  convolu�onal  layers  are  followed  by  Batch  Normaliza�on  and  ReLu  layers. 
 Finally,  follows  a  convolu�onal  layer,  a  Global  Average  pooling  layer  and  the  final  classifica�on  takes 
 place at the So�Max layer. A brief illustra�on of the architecture is depicted in Figure 7. 

 34  Petrou,  N.,  Christodoulou,  G.,  Avgerinakis,  K.,  &  Kosmides,  P.  (2023,  July).  Lightweight  Mood  Es�ma�on  Algorithm  For  Faces  Under  Par�al 
 Occlusion. In   Proceedings of the 16th Interna�onal  Conference on PErvasive Technologies Related to Assis�ve Environments   (pp. 402-407). 

 33  Arriaga,  O.,  Valdenegro-Toro,  M.,  &  Plöger,  P.  (2017).  Real-�me  convolu�onal  neural  networks  for  emo�on  and  gender  classifica�on.   arXiv 
 preprint arXiv:1710.0755 

 32  Howard,  A.,  Sandler,  M.,  Chu,  G.,  Chen,  L.  C.,  Chen,  B.,  Tan,  M.,  ...  &  Adam,  H.  (2019).  Searching  for  mobilenetv3.  In   Proceedings  of  the 
 IEEE/CVF interna�onal conference on computer vision   (pp.  1314-1324). 

 31  Sandler,  M.,  Howa  rd,  A.,  Zhu,  M.,  Zhmoginov,  A.,  &  Chen,  L.  C.  (2018).  Mobilenetv2:  Inverted  residuals  and  linear  bo�lenecks. 
 In   Proceedings of the IEEE conference on computer  vision and pa�ern recogni�on   (pp. 4510-4520). 

 30  Petrou,  N.,  Christodoulou,  G.,  Avgerinakis,  K.,  &  Kosmides,  P.  (2023,  July).  Lightweight  Mood  Es�ma�on  Algorithm  For  Faces  Under  Par�al 
 Occlusion. In   Proceedings of the 16th Interna�onal  Conference on PErvasive Technologies Related to Assis�ve Environments   (pp. 402-407). 

 29  Zhang,  K.,  Zhang,  Z.,  Li,  Z.,  &  Qiao,  Y.  (2016).  Joint  face  detec�on  and  alignment  using  mul�task  cascaded  convolu�onal  networks.   IEEE 
 signal processing le�ers  ,   23  (10), 1499-1503. 
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 Figure 7:  Architecture of mini-Xcep�on model 
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 A2.4 Model training and Experimental Results 

 Facial Emo�on Recogni�on in full faces 

 Regarding  the  scenario  that  includes  full  faces,  without  any  part  of  the  face  being  occluded,  a 
 Mini-Xcep�on  model  was  trained  from  scratch  on  our  data  collec�on.  The  best  performing  model  was 
 trained  with  Adam  op�mizer,  using  an  ini�al  Learning  rate  of  1e-3,  batch  size  64  for  300  epochs.  In 
 addi�on,  the  learning  rate  was  gradually  reduced  based  on  the  Reduce  Learning  Rate  on  Plateau 
 technique.  Lastly,  we  dealt  with  the  class  imbalance  problem  by  using  weighted  loss  func�on,  while 
 to mi�gate overfi�ng we applied L2 regulariza�on. 

 For  the  preprocessing  pipeline,  the  model  takes  video  frames  as  input,  transforming  them  into  64x64 
 images.  Moreover,  to  increase  the  diversity  of  our  training  data,  we  apply  data  augmenta�on 
 techniques, such as rota�on, width or height shi�, flip and shear transforma�on. 

 The  model  scored  overall  accuracy  and  F1-score  equal  to  0.71  on  our  test  data.  In  Figure  8,  we 
 present  the  confusion  matrix  on  our  test  data,  which  summarizes  how  the  model  classified  the  data 
 into  the  emo�on  classes  (MODEL_1).  We  observe  that  the  ‘happy’  class  scores  the  highest  accuracy 
 rate  (86%)  among  the  rest,  followed  by  the  ‘other’  class  (74%).  We  also  no�ce  that  the  ‘neutral’ 
 images  are  some�mes  incorrectly  classified  as  ‘sad’  (16%),  and  some�mes  as  ‘other’  (8%),  while  the 
 ‘sad’  emo�ons  are  some�mes  iden�fied  as  either  ‘neutral’  or  ‘other’.  Regarding  the  overall 
 performance,  there  is  room  for  improvement,  especially  regarding  the  classes  ‘nega�ve’  and  ‘neutral’. 
 However,  it  is  quite  reasonable  that  we  do  not  have  the  perfect  emo�on  recogni�on  accuracy, 
 especially  on  such  tasks,  due  to  the  subjec�ve  nature  of  emo�on  percep�on.  Some�mes  it  is 
 challenging  even  for  humans  to  dis�nguish  similar  facial  expressions,  such  as  a  neutral,  from  a  sad 
 face,  due  to  the  subtle  differences  between  such  expressions.  Thus,  it  is  far  more  difficult  to  transfer 
 that knowledge to a machine learning model. 

 Facial Emo�on Recogni�on on par�ally occluded faces 

 For  classifying  facial  expressions  under  occlusion,  we  chose  to  u�lize  the  same  mini-Xcep�on  model 
 of  our  previous  work,  pretrained  on  our  original  data  collec�on  (that  includes  full  faces,  without  any 
 part  of  the  face  being  occluded)  but  with  some  further  tuning.  The  process  aimed  in  u�lizing  the 
 already  learned  knowledge  of  the  pre-trained  network,  to  reduce  the  training  �me  as  well  as  to 
 improve  the  overall  classifica�on  performance  for  the  occluded  scenario.  In  order  to  provide  a  frui�ul 
 comparison  and  applicable  empirical  results  during  our  experiments,  we  focused  on  the 
 experimenta�on and evalua�on of four different se�ngs for the occluded dataset: 

 ●  MODEL_1: Baseline evalua�on using a the pre-trained model from the non-occluded faces 
 se�ng (baseline model) dataset. 

 ●  MODEL_2:  Transfer  learning  by  freezing  all  parameters  except  those  in  the  last  convolu�onal 
 layer for feature extrac�on. 

 ●  MODEL_3:  Transfer  learning  with  parameter  ini�aliza�on  based  on  the  baseline  model,  but 
 without freezing any parameters during training. 

 ●  MODEL_4:  Training  the  mini-Xcep�on  architecture  from  scratch  on  the  occluded  dataset,  with 
 parameter ini�aliza�on based on Xavier uniform ini�alizer.  35 

 A  brief  summariza�on  of  the  above-men�oned  model  se�ngs  is  available  in  Table  1.  Regarding  the  choice 
 of  hyperparameters,  training  op�ons  and  other  preprocessing,  the  same  choices  were  used  for  all  the 
 models, as it was also used in the work of the non-occluded scenario. 

 35  Glorot,  X.,  &  Bengio,  Y.  (2010,  March).  Understanding  the  difficulty  of  training  deep  feedforward  neural  networks.  In   Proceedings  of  the 
 thirteenth interna�onal conference on ar�ficial intelligence and sta�s�cs   (pp. 249-256). JMLR Workshop  and Conference Proceedings. 
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 Table 1:  Mini Excep�on’s Experimental Se�ngs & Results for Occlusion 

 ID  MODEL SETTINGS  # OF NEW TRAINABLE 
 PARAMETERS  DESCRIPTION  TEST 

 ACCURACY 
 TEST 

 F1-MACRO 
 TEST 

 F1-WEIGHTED 

 MODEL_1  Pre-trained 
 for non-occluded  0  No addi�onal training involved  0.49  0.46  0.49 

 MODEL_2 

 Pre-trained 
 for non-occluded 

 & 
 Unfreeze Last Layer 

 4,612 

 All parameters apart from the 
 last convolu�onal layer were 
 frozen during training on the 

 occluded dataset 

 0.63  0.61  0.63 

 MODEL_3 

 Pre-trained for 
 non-occluded 

 & 
 Unfreeze All Layers 

 53,636 

 Parameters ini�alized based 
 on MODEL_1 and con�nued 

 training on the occluded 
 dataset 

 0.69  0.68  0.69 

 MODEL_4  Trained from 
 Scratch  53,636  Parameters were reini�alized  0.68  0.67  0.68 

 The  best-performing  model,  MODEL_3,  was  the  pre-trained  model,  fine-tuned  for  the  occluded  task. 
 It  is  worth  to  note  that,  in  general,  building  a  model  from  the  ground  up  usually  results  in  be�er 
 performance.  But  in  our  situa�on,  there  is  a  minor  improvement  of  1%  in  the  transfer  learning 
 se�ng.  This  can  be  explained  by  the  fact  the  original  dataset  and  model  we  worked  on,  u�lized 
 slightly  more  data.  That  is,  since  the  ar�ficial  process  that  performs  the  occlusion,  had  resulted  in  a 
 dataset  with  almost  10%  less  images.  That  happened  since  in  some  instances  the  facial  landmarks 
 (including  the  eyes)  could  not  be  iden�fied  by  the  MTCNN  algorithm,  thus  those  images  were  not 
 used  in  the  training  of  the  par�al  occlusion  scenario.  Finally,  se�ng  aside  the  aspect  of  performance, 
 the  transfer  learning  case  and  the  ini�aliza�on  of  the  weights  in  MODEL_3  allowed  for  sa�sfactory 
 loss  and  accuracy  even  a�er  a  few  epochs,  contras�ng  the  MODEL_4  which  was  trained  from  scratch, 
 that  required  40  to  50  epochs  for  similar  performance..  Comparing  the  performance  between  our 
 best  models  for  the  non-occluded  and  occluded  cases,  it  was  no�ced  that  the  overall  performance 
 was  only  reduced  by  a  small  amount  of  4%  when  occlusion  was  introduced.  Furthermore,  by 
 comparing  the  performance  diminishment  between  the  two  above-men�oned  scenarios  for  the 
 different  classes,  it  was  observed  that  numerous  misclassifica�ons  had  risen  for  the  classes  “sad”  and 
 “neutral”  Figure  8.  It  is  believed  that  this  is  due  to  the  fact  that  apart  from  having  the  lip  corners 
 pulled  down,  people  o�en  express  their  sadness  by  crying  or  by  raising  their  inner  corners  of  eye- 
 brows  raised  and  eyelids  loose.  36  Therefore,  this  informa�on  is  hard  to  be  u�lized  under  par�al  or 
 severe occlusion. 

 36  Reed,  L.  I.,  &  DeScioli,  P.  (2017).  The  communica�ve  func�on  of  sad  facial  expressions.   Evolu�onary  Psychology  ,   15  (1), 
 1474704917700418. 
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 Figure 8:  Confusion Matrices for unseen data 

 Based  on  the  results  of  the  above  experiments,  it  was  indicated  that  FER  under  par�al  occlusion  is  s�ll 
 possible.  Furthermore,  the  results  confirm  that  the  exploita�on  of  transfer  learning  as  well  as  the 
 simula�on  techniques  for  synthe�c  occlusion  can  lead  to  a  respectable  model  that  produces  results 
 that keep pace with frameworks that u�lize informa�on from the periocular area and eyes. 

 Evalua�on under Real Condi�ons 

 In  our  latest  phase  of  experimenta�on,  we  conducted  some  internal  tests  closely  aligned  with 
 real-world  scenarios  relevant  to  our  project's  objec�ves.  These  included  u�lizing  both  480p  and 
 full-HD  webcams,  simula�ng  condi�ons  where  users  wore  VR  headsets  causing  occlusion  of  the  upper 
 face,  as  well  as  scenarios  with  fully  exposed  faces  (Figure  9).  Our  par�cipants  engaged  with  varied 
 content  under  diverse  ligh�ng  condi�ons.  Overall,  the  outcomes  were  promising  and  aligned  with 
 user  feedback  collected  post-session.  However,  we  observed  that  under  lower  ligh�ng  condi�ons, 
 performance  slightly  declined,  occasionally  resul�ng  in  mismatches,  par�cularly  with  the  recogni�on 
 of sad emo�ons, as suggested by our previous evalua�on findings. 
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 Figure 9:  Experimental sessions for model tes�ng  under real condi�ons 
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 APPENDIX 3 - Stress Es�ma�on - Catalink 

 A3.1 Literature and overview 
 Stress  es�ma�on  using  wearable  devices  has  emerged  as  a  powerful  tool,  offering  unique  insights 
 into  human  emo�ons  and  reac�ons.  Equipped  with  advanced  sensors  measuring  parameters  like 
 heart  rate  and  skin  conductance,  these  devices  provide  real-�me  data  that  can  unveil  moments  of 
 heightened  stress,  anger,  or  intense  emo�ons.  Beyond  tradi�onal  health  applica�ons,  this  technology 
 delves  into  the  realm  of  emo�onal  intelligence,  enabling  users  to  understand  and  share  their 
 responses in various situa�ons. 
 By  capturing  subtle  physiological  changes,  informa�on  can  be  invaluable  in  personal  and  professional 
 contexts,  helping  individuals  navigate  social  interac�ons,  and  improve  communica�on.  Addi�onally, 
 the  insights  derived  from  stress  es�ma�on  through  wearables  can  be  seamlessly  integrated  into  a 
 co-crea�on  music  service,  enhancing  the  overall  experience  for  users.  37  For  instance,  in  a  scenario 
 where  users  not  only  understand  their  stress  levels  but  collabora�vely  contribute  to  crea�ng  music 
 that  dynamically  reflects  their  emo�onal  states.  This  novel  approach  transforms  stress  monitoring 
 into  a  shared,  crea�ve  endeavor,  allowing  individuals  to  collec�vely  shape  a  personalized  experience 
 that  resonates  with  their  emo�onal  landscape.  In  this  way,  wearables  not  only  serve  as  tools  for 
 self-awareness  but  also  contribute  to  a  collabora�ve  and  enriched  emo�onal  journey  through  the 
 medium  of  music  and  art.  More  specifically,  the  exploita�on  of  Heart  Rate  Variability  (HRV)  in 
 wearable  stress  monitoring  represents  a  significant  advancement  in  our  understanding  of  human 
 psychological  states.  HRV,  as  an  indicator  of  the  varia�on  in  heartbeat  intervals,  provides  direct 
 insight into the autonomic nervous system's response to stress and emo�onal arousal. 
 Schmidt  et  al.  38  took  the  ini�a�ve  and  conducted  an  innova�ve  study  on  stress  and  affect  detec�on. 
 The  authors  collected  and  published  the  WESAD  (Wearable  Stress  and  Affect  Detec�on)  dataset,  a 
 mul�modal  dataset  that  demonstrates  the  effec�veness  of  accurately  predic�ng  stress  using  HRV 
 along  with  other  physiological  data.  Nkurikiyeyezu  et  al.  39  study  the  impact  of  person-specific 
 biometrics  for  stress  predic�on  and  they  prove  that  individualized  models  indicate  improved 
 performance  accuracy.  Furthermore,  Koldijk  et  al.  40  echoed  this  approach  with  their  work,  which 
 introduced  the  SWELL  dataset  to  improve  stress  and  user  modeling  through  personalized 
 data.Moreover,  Bobade  and  Vani  41  u�lized  deep  learning  and  machine  learning  algorithms  to  analyze 
 mul�modal  physiological  data  to  iden�fy  stress,  highligh�ng  the  poten�al  of  sophis�cated 
 computa�onal  techniques  to  decipher  the  intricate  pa�erns  of  HRV  and  other  physiological 
 parameters. 

 41  Bobade,  P.,  &  Vani,  M.  (2020,  July).  Stress  detection  with  machine  learning  and  deep 
 learning  using  multimodal  physiological  data.  In 2020  Second  International  Conference  on 
 Inventive Research in Computing Applications (ICIRCA) (pp. 51-57). IEEE. 

 40  Koldijk,  S.,  Sappelli,  M.,  Verberne,  S.,  Neerincx,  M.  A.,  &  Kraaij,  W.  (2014,  November).  The 
 swell  knowledge  work  dataset  for  stress  and  user  modeling  research.  In Proceedings  of  the 
 16th international conference on multimodal interaction (pp. 291-298). 

 39  Nkurikiyeyezu,  Kizito,  Anna  Yokokubo,  and  Guillaume  Lopez.  "The  effect  of 
 person-specific  biometrics  in  improving  generic  stress  predictive  models."  arXiv  preprint 
 arXiv:1910.01770 (2019). 

 38  Schmidt,  P.,  Reiss,  A.,  Duerichen,  R.,  Marberger,  C.,  &  Van  Laerhoven,  K.  (2018,  October).  Introducing  wesad,  a  mul�modal  dataset  for 
 wearable stress and affect detec�on. In Proceedings of the 20th ACM interna�onal conference on mul�modal interac�on (pp. 400-408). 

 37  Turchet,  L.,  &  Barthet,  M.  (2018).  Co-design  of  Musical  Hap�c  Wearables  for  electronic  music  performer's  communica�on.   IEEE 
 Transac�ons on Human-Machine Systems  ,   49  (2), 183-193. 
 Chen,  C.  C.,  Chen,  Y.,  Tang,  L.  C.,  &  Chieng,  W.  H.  (2022).  Effects  of  interac�ve  music  tempo  with  heart  rate  feedback  on  physio-psychological 
 responses of basketball players.   Interna�onal journal of environmental research and public health, 19(8), 4810. 
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 Within  the  MuseIT  project,  for  the  task  of  stress  es�ma�on,  we  explored  the  scenario  of  es�ma�ng 
 the  stress  levels  of  an  individual,  using  an  electrocardiogram  (ECG)  signal.  More  specifically,  we 
 focused  on  extrac�ng  the  inter-beat-intervals  (IBIs)  and  the  HRV  metrics.  In  par�cular,  HRV  is  derived 
 from  the  ECG  signals  and  captures  the  changes  in  the  �me  intervals  between  consecu�ve  heartbeats 
 and  reflects  how  adaptable  our  body  can  be  to  different  environmental  and  psychological  changes. 
 HRV  is  a  significant  health  indicator,  since  it  can  provide  insights  regarding  overall  health  and 
 wellbeing,  and  most  significantly,  it  can  help  to  uncover  the  mental  tension  of  a  person,  since  it  is  a 
 strong  indicator  of  stress.  To  quan�fy  HRV,  we  can  extract  Time  domain  and  Frequency  domain 
 features  as  explained  in  the  next  sec�ons.  In  our  applica�on  these  features  are  extracted  from  an  ECG 
 signal,  captured  from  a  PolarH10  42  chest  strap.  Then,  the  extracted  features  are  used  to  train  and 
 evaluate a Machine Learning (ML) model to accurately predict the stress level of an individual. 

 A3.2 Training data 
 A  quality  dataset  is  vital  for  training  a  stress  detec�on  algorithm,  providing  the  founda�on  for  pa�ern 
 recogni�on  and  adaptability  across  diverse  scenarios,  ul�mately  ensuring  precision  and  reliability  in 
 stress  assessment.  To  this  end,  the  WESAD  dataset  35  was  u�lized  35  .  WESAD  consists  of  mul�variate 
 data,  gathered  from  15  subjects  during  a  stress-affect  lab  study,  while  wearing  physiological  and 
 mo�on  sensors.  The  devices  used  for  data  collec�on  were  a  chest-worn  device,  the  RespiBAN  43  and  a 
 wrist-worn  device,  the  Empa�ca  E4  44  .  The  following  sensor  modali�es  are  included:  BVP,  ECG, 
 electrodermal ac�vity, electromyogram, respira�on, body temperature, and three-axis accelera�on. 
 Specifically  for  our  work,  the  data  that  we  exploited  are  the  ECG  signals  recorded  from  the  RespiBAN. 
 Moreover,  the  dataset  contains  three  different  affec�ve  states  (‘neutral’,  ‘stress’,  ‘amusement’).  In 
 addi�on,  self-reports  of  the  subjects,  which  were  obtained  using  several  established  ques�onnaires, 
 are  contained  in  the  dataset.  Details  can  be  found  in  the  dataset's  readme-file,  as  well  as  in  WESAD’s 
 official website  45  . 

 Data collec�on and processing 

 Data collec�on from chest-strap sensor 

 In  order  to  test  our  stress  detec�on  models  on  realis�c  data,  we  decided  to  collect  our  own 
 measurements,  with  the  help  of  the  chest-strap  sensor  PolarH10  46  .  PolarH10  is  a  supremely  precise 
 heart  rate  sensor,  providing  top-quality  heart  rate  measurements.  In  addi�on,  it  is  considered  one  of 
 the  most  accurate  heart  rate  sensors  by  many  sources.  Some  of  its  features  that  make  it  stand  out 
 from the rest are following: 

 ●  Chest straps are the gold standard, validated against the clinical ECG, si�ng around 99% accurate  47 

 ●  Polar H10 is one of the most accurate heart rate sensors currently available on the market. 
 ●  Used for medical research and sports science.  48 

 ●  Connects with Bluetooth, ANT+ and 5 kHz. 
 ●  Several connec�ons can be ac�ve simultaneously. 
 ●  Built-in memory for a session. 
 ●  Easy for subjects to wear and stress-free, as shown in Figure 10  . 
 ●  Easily found in the market, with a rela�vely low price.  49 

 49  h�ps://www.polar.com/en/sensors/h10#:~:text=Heart%20Rate%20Sensor,with%20Bluetooth%C2%AE%20and%20ANT%2B. l 

 48  Schaffarczyk,  M.,  Rogers,  B.,  Reer,  R.,  &  Gronwald,  T.  (2022).  Validity  of  the  polar  H10  sensor  for  heart  rate  variability  analysis  during 
 res�ng state and incremental exercise in recrea�onal men and women.   Sensors  ,   22  (17), 6536. 

 47  https://nesswell.com/best-chest-strap-heart-rate-monitors/ 

 46  h�ps://www.polar.com/en/sensors/h10-heart-rate-sensor 

 45  h�ps://archive.ics.uci.edu/dataset/465/wesad+wearable+stress+and+affect+detec�on 

 44  h�ps://www.empa�ca.com/en-gb/research/e4/ 

 43  h�p://www.biosignalsplux.com/en/respiban-professional 

 42  h�ps://www.polar.com/en/sensors/h10-heart-rate-sensor 
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 Figure 10:  Wearable Polar H10 Sensor 

 Signal Pre-processing Pipeline 

 To  build  a  pipeline  that  consists  of  the  data  collec�on  and  preprocessing  steps  during  a  session,  the 
 following  procedure  was  automated.  Firstly,  when  a  session  ini�ates,  a  data  recording  is  performed  to 
 collect  an  ECG  signal  from  an  individual  through  PolarH10.  Then  the  recorded  signals  are 
 preprocessed  and  filtered,  to  fill  in  any  missing  values  and  remove  the  outliers.  A�erwards,  the  IBIs 
 are  es�mated  from  the  ECG,  and  finally,  the  temporal  and  frequency  features  were  extracted  from 
 the  HRV,  as  detailed  in  the  next  subsec�on  (Table  2).  To  compute  the  HRV  features,  signal 
 segmenta�on  is  necessary.  A  typical  segmenta�on  for  such  a  task  involves  60-second  window  frames 
 with  15  seconds  overlap,  achieving  con�nuity  and  high  sensi�vity  for  detec�ng  stress-induced 
 physiological changes.  The whole procedure and pipeline are depicted in Figure 11. 

 Figure 11:  Data collec�on and Pre-processing Pipeline 
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 A3.3 Feature Extrac�on 
 A  specific  feature  extrac�on  strategy  was  followed  in  order  to  extract  aggregated  and  meaningful 
 features  from  the  raw  signals  contained  in  the  training  set.  The  different  HRV  metrics  are  categorized 
 into  Time  Domain,  Frequency  Domain,  and  Nonlinear  categories,  providing  features  like  the  mean  and 
 standard  devia�on  of  IBIs.  Finally,  these  direct  characteris�cs  can  be  used  as  independent  variables 
 during  the  learning  process  of  an  ML  algorithm  directly.  The  33  features  extracted  are  briefly 
 explained in Table 2. 

 Table 2:  Heart Rate  Variability (HRV) Features Overview  Model raining  and experimental results 

 Time Domain 
 Features 

 Frequency Domain 
 Features 

 Non-linear 
 Features 

 Average of RR intervals  Very low frequency  Poincaré plot standard devia�on 
 perpendicular to the line of iden�ty 

 Median of RR intervals  VLF power as percentage of 
 total power 

 Poincaré plot standard devia�on along the 
 line of iden�ty 

 Standard devia�on of RR intervals  Low frequency  Kurtosis of RR intervals 

 Root mean square of successive RR 
 interval differences 

 LF power as percentage of 
 total power 

 Skewness of RR intervals 

 Standard devia�on of successive RR 
 interval differences 

 LF power in normalized 
 units 

 Mean of rela�ve RR intervals 

 Ra�o of SDRR to RMSSD  High frequency  Median of rela�ve RR intervals 

 Heart rate  HF power as percentage of 
 total power 

 Standard devia�on of rela�ve RR intervals 

 Percentage of differences between 
 adjacent NNs over 25 ms 

 HF power in normalized 
 units 

 Root mean square of successive rela�ve RR 
 interval differences 

 Percentage of differences between 
 adjacent NNs over 50 ms 

 Total power of RR intervals  Standard devia�on of successive rela�ve 
 RR interval differences 

 -  Ra�o of LF to HF power  Ra�o of SDRR_REL_RR to RMSSD_REL_RR 

 -  Ra�o of HF to LF power  Kurtosis of rela�ve RR intervals 

 -  -  Skewness of rela�ve RR intervals 

 -  -  Sample entropy 

 HRV  offers  vast  poten�al  for  just-in-�me  interven�ons,  behavioural  modifica�on,  and  training 
 guidance.  A  high  degree  of  methodological  rigor  highlights  HRV's  importance  in  crea�ng  personalized 
 and  adap�ve  stress  management  systems,  paving  the  way  for  new  innova�ons  in  wearable 
 technology and stress interven�on strategies. 
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 A3.4 Feature selec�on 
 Prior  to  training  the  different  ML  models,  we  tried  different  feature  selec�on  techniques,  to  reduce 
 the  dimensionality  of  our  data  and  keep  only  the  most  informa�ve  features.  To  this  end,  we  applied 
 separately  the  ANOVA  (Analysis  of  Variance)  and  the  Principal  Component  Analysis  (PCA)  method  on 
 our  features.  We  experimented  with  keeping  32,  25,  12  and  10  features/components.  The  extracted 
 features  have  been  used  in  order  to  train  the  models  which  will  finally  detect  whether  a  person  is  in  a 
 stressful state or not. 

 A3.5 Model Selec�on 
 The  goal  was  to  create  a  classifier  capable  of  categorizing  each  signal  segment  into  either  a  stress  or 
 non-stress  state,  thus  enabling  the  inference  of  whether  a  subject  is  experiencing  stress  or  not. 
 Experimenta�ons  with  different  ML  models  were  performed,  to  find  the  one  that  scores  the  highest 
 performance for our task. 
 The algorithms that were tried out are the following: 

 ●  Support Vector Machine (SVM) with Linear and Radial Basis Func�on kernels. 
 ●  Gradient Boos�ng (XGBoost) 
 ●  Random Forest Trees 
 ●  Simple Mul�-Layer Perceptron (MLP) Neural Network 

 In  the  following  table,  we  provide  some  of  the  experiments  conducted  with  different  models.  For 
 each  trial  we  provide  the  results  (F1-scores)  on  the  WESAD  test  dataset  and  on  the  data  collected 
 from the PolarH10 sensor. More details on the results are provided on the next subsec�on. 

 Model  Architecture  Feature 
 selec�on 

 techniques 

 number of 
 features/comp 

 onents 

 F1-Score 
 (WESAD) 

 F1-Score 
 (PolarH10) 

 Neural 
 Network 

 Input (12) - 
 Hidden (24) 
 -BatchNorm- 

 Output (2) 

 ANOVA  12  0.90  0.60 

 XGB  200 es�mators  PCA  12  0.85  0.58 

 XGB  500 es�mators  ANOVA  12  0.88  0.55 

 Table  3:  For  each  experiment,  we  provide  the  type  of  model  used  and  its  architecture,  the  feature  selec�on 
 technique  applied  to  select  the  most  informa�ve  features  (or  number  of  components,  in  case  of  PCA)  for  the 
 model  training,  the  number  of  features/components  kept  and  the  F1  macro  scores  on  the  WESAD  tes�ng  data 
 and on the data collected from our experiments using the chest strap sensor, PolarH10. 

 As  it  is  clearly  seen  from  the  table,  the  model  that  scored  the  highest  performance  accuracy  was  a 
 simple  MLP  network,  consis�ng  of  a  single  hidden  layer  of  24  neurons,  which  was  trained  with  the  12 
 most  informa�ve  features  obtained  from  ANOVA.  The  model  was  trained  with  an  Adam  op�mizer,  for 
 60  epochs,  with  a  batch  size  of  32  and  with  a  learning  rate  of  1e-3.  Furthermore,  during  the  training 
 and  model  selec�on,  the  Leave-one-subject-out  cross  valida�on  (LOOCV)  method  was  u�lised, 
 namely  we  spli�ed  the  subjects’  data  into  training  and  valida�on  sets  and  a�erwards  we  applied  data 
 scaling on each subject separately. 
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 A3.5 Results under real condi�ons 
 To  collect  some  data  samples  for  our  own  data  through  PolarH10,  we  designed  and  implemented  an 
 experiment,  where  par�cipants  were  accomplishing  some  predefined  tasks.  During  this  session,  the 
 individuals  were  wearing  a  Polar  H10  chest  strap  sensor  that  was  recording  their  ECG  signal.  A�er  the 
 sessions  were  over,  the  signals  were  annotated  and  kept  anonymous  to  evaluate  our  models  on 
 realis�c data. 
 While  our  best  model  achieved  an  impressive  F1-score  of  0.90  for  the  LOOCV,  its  performance  on  our 
 collected  data  was  rather  poor,  scoring  an  F1-score  of  0.60,  highligh�ng  the  need  for  further 
 enhancements.  This  discrepancy  in  performance  can  likely  be  a�ributed  to  the  sensor  differences  and 
 discrepancies;  the  WESAD  dataset  (used  for  training  and  valida�on)  employed  the  RespiBAN  sensor, 
 while  we  used  the  PolarH10  sensor  during  our  experiments.  In  fact,  each  sensor  introduces  varying 
 levels  of  noise  and  sensi�vity,  necessita�ng  different  data  pre-processing  approaches  for  data 
 collected from different sensors. 
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 APPENDIX 4 - Neurophysiological Predic�on - X-System 
 Neurophysiological  predic�on  (XSL)  X-System  is  a  computa�onal  model  of  the  musical  brain  capable 
 of  predic�ng  the  neurophysiological  effects  of  music.  It  is  dis�nct  from  the  CERTH  and  CTL  systems, 
 which  are  respec�vely  focused  on  diagnosing  the  emo�on  and  mood  of  users.  X-System  is  focused  on 
 predic�ng  the  neurophysiological  effect  of  the  music  itself.  This  means  it  can  be  complementary  to 
 the  CERTH  and  CTL  systems  in  communica�ng  neurophysiological  informa�on  between  co-creators 
 and in the process of composi�on. 
 The  demonstra�on  below  shows  an  X-System  predic�ve  analysis  of  a  song  by  one  of  SHMU’s 
 (anonymised)  musicians.  The  system  models  the  principal  areas  and  networks  of  the  brain  involved  in 
 processing  music.  Brain  stem  responses  to  sounds  of  primal  evolu�onary/survival  value  -  for  example 
 startling,  rapidly  approaching  or  very  high  sounds  50  -  are  modelled  by  volume,  turbulence  and 
 sharpness  algorithms,  as  are  related  ascending  pathways  by  way  of  the  inferior  colliculus  to  the 
 amygdala.  51  The  responses  of  the  basal  ganglia,  cerebellum,  premotor  and  motor  cortex  52  are 
 modelled  by  rhythmicity  algorithms,  detec�ng  the  power,  salience  and  density  of  periodic  spectral 
 turbulence  ;  53  this  forms  part  of  a  complex  loop  with  processing  and  reten�on  of  pa�erns  in  the 
 auditory  cortex,  including  the  right  anterior  secondary  cortex  54  modelled  by  autocorrela�on  and 
 related  to  tempo  and  metrical  structures.  There  are  algorithms  that  as  far  as  possible  replicate  basic 
 pitch  detec�on  in  the  auditory  brain  stem  as  well  as  more  complex  modelling  of  Heschl’s  gyrus.  Here, 
 chroma  and  pitch  height  are  detected,  55  as  well  as  fundamentals  and  spectra.  56  Important  outputs  of 
 these  models  are  indicators  of  levels  of  harmonicity  (how  close  the  spectrum  is  to  the  harmonic 
 series)  and  the  resul�ng  ac�va�on  of  limbic  and  paralimbic  systems.  57  These  are  measures  of 

 57  Peretz,  I,  Aube  W,  Armony,  J.L.  (2013)  Towards  a  biology  of  musical  emo�ons  in  The  Evolu�on  of  Emo�onal  Communica�on:  From  Sounds 
 in Nonhuman mammals to Speech and Music in Man ed Altenmuller E, Schmidt S, Zimmerman E OUP 
 McDermo� JH, Lehr AJ, Oxenham AJ (2010) Individual differences reveal the basis of consonance  Current  Biology  20 1035-1041 
 Koelsch  S,  Fritz  T  Schlaug  G  (2008)  Amygdala  ac�vity  can  be  modulated  by  unexpected  chord  func�ons  during  music  listening  Neuroreport 
 9(18):1815-9  . 

 56  Schneider,  P.  et  al  (2002)  Structural,  func�onal,  and  perceptual  differences  in  Heschl's  gyrus  and  musical  instrument  preference.  Annals  of 
 the New York Academy of Sciences  , 1060, 387-94 
 Menon, V. Et al (2002) Neural correlates of �mbre change in harmonic sounds Neuroimage 17 (4), 1742-1754 

 55  Griffiths  TD,  Buchel  C,  Frackowiak  RS,  Pa�erson  RD  (1998)  Analysis  of  temporal  structure  in  sound  by  the  human  brain.  Nature 
 Neuroscience  1:422–427. 
 Warren,  J.D.  et  al  (2003)  Separa�ng  pitch  chroma  and  pitch  height  in  the  human  brain  Proceedings  of  the  Na�onal  Academy  of  Sciences 
 USA100 (17) 10038-10042 

 54  Penhune  VB,  Zatorre  RJ  and  Feindel  WH  (1999).  The  role  of  auditory  cortex  in  reten�on  of  rhythmic  pa�erns  as  studied  in  pa�ents  with 
 temporal lobe removals including Heschl’s gyrus.  Neuropsychologia,  37(3), 215–231. 
 Peretz  I  (2001).  Listen  to  the  brain:  the  biological  perspec�ve  on  musical  emo�ons.  In  P  Juslin  and  J  Sloboda,  eds,  Music  and  emo�on: 
 Theory and research,  pp. 105–134. Oxford University  Press, London. 
 Peretz  I  and  Kolinsky  R  (1993).  Boundaries  of  separability  between  rhythm  in  music  discrimina�on:  A  neuropsychological  perspec�ve.  The 
 Quarterly Journal of Experimental Psychology,  46(2),  301–325. 

 53  Osborne,  N.  (2009b)  Towards  a  Chronobiology  of  Musical  Rhythm  in  Communica�ve  Musicality  Editors:  S.  Malloch  &  C.  Trevarthen.  ISSN 
 0077-8923. (Oxford, UK and New York, USA) 545-564 

 52  Panksepp, J. (1998) Affec�ve Neuroscience OUP Oxford  passim 

 51  Jorris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude- modulated sounds  Physiological Reviews  84 641-577 
 Heldt,  SA,  Falls,  WA  (2003)  Destruc�on  of  the  Inferior  Colliculus  disrupts  the  produc�on  and  inhibi�on  of  fear  condi�oned  to 
 an acous�c s�mulus  Behavioural Brain Research  144  175-185 
 Marsh  RA,  et  al  (2002)  Projec�on  to  the  Inferior  Colliculus  from  the  Basal  Nucleus  of  the  Amygdala  The  Journal  of 
 Neuroscience  22/23 10449-10460 

 50  Sivaramakrishnan  S,  et  al  (2004)  GABA  (A)  synapses  shape  neuronal  responses  to  sound  intensity  in  the  Inferior  Colliculus  Journal  of 
 Neuroscience  26;24(21)5031-43 
 Osborne,  N.  (2009b)  Towards  a  Chronobiology  of  Musical  Rhythm  in  Communica�ve  Musicality  Editors:  S.  Malloch  &  C.  Trevarthen.  ISSN 
 0077-8923. (Oxford, UK and New York, USA) 545-564 
 Erlich  N,  Lipp  OV,  Slaughter  V  (2013)  Of  hissing  snakes  and  angry  voices:  human  infants  are  differently  responsive  to  evolu�onary 
 fear-relevant sounds  Developmental Science  16;6 894-904 
 Frankland  PW  et  al  (1997)  Ac�va�on  of  amygdala  cholecystokinin  B  receptors  poten�ates  the  acous�c  startle  response  in  rats  The  Journal  of 
 Neuroscience  17(5) 1838-47 
 Panksepp,  J.  &  C.  Trevarthen.  2009.  The  neuroscience  of  emo�on  in  music.  In  Communica�ve  Musicality  .  S.  Malloch,  C.  Trevarthen,  Eds.: 
 105–146. OUP. 
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 “ver�cal”  harmonicity,  but  In  pathways  to  emo�onal  centres,  for  example  the  amygdala,  “linear” 
 harmonicity,  or  how  notes  and  chords  follow  one  another,  is  also  significant,  and  modelled  by  a  linear 
 harmonic  cost  algorithm.  58  The  values  are  plo�ed  on  an  emo�on  colour  circle  -  low  arousal  towards 
 the  bo�om  of  the  circle,  high  arousal  towards  the  top,  nega�ve  valence  le�,  posi�ve  valence  right.  59 

 The  coordinates  offer  approximate  loca�ons  for  tracks  in  zones  of  emo�on,  mood  and  feeling  within 
 the circle. 
 The  colour  circle  plots  autonomic  arousal  (y  axis,  top  to  bo�om)  against  vagal  power,  or  posi�ve 
 feeling  (x  axis,  le�  to  right).  All  human  emo�ons  can  be  located  within  this  circle  Figure  12  below  also 
 shows  XSL  analysis  graphs  corresponding  to  predic�ons  of  ac�vity  in  the  autonomic  nervous  system, 
 endocrine system, auditory cortex, motor cortex and brain stem. 
 The  colour  circle  may  act  as  a  generator  of  avatars.  X-System  analyses  also  offer  feedback  to 
 co-creators, as for example to the feedback in below figure. Figure 12: Example of XSL analysis 

 Figure 12:  Example of XSL analysis 

 59  a development and revision of 
 Scherer,  K.R.,  Shuman,  V.,  Fontaine,  J.R.J,  &  Soriano,  C.  (2013).  The  GRID  meets  the  Wheel:  Assessing  emo�onal  feeling  via  self-report.  In 
 Johnny  R.J.  Fontaine,  Klaus  R.  Scherer  &  C.  Soriano  (Eds.),  Components  of  Emo�onal  Meaning:  A  sourcebook  (pp.  281-298)  .  Oxford:  Oxford 
 University Press. 
 Scherer, K. R. (2005). What are emo�ons? And how can they be measured?  Social Science Informa�on,  44(4)  , 693-727. 
 Russell JA. (1980) A circumplex model of affect.  Journal  of Personality and Social Psychology.  39:1161–1178. 

 58  Koelsch  S,  Fritz  T  Schlaug  G  (2008)  Amygdala  ac�vity  can  be  modulated  by  unexpected  chord  func�ons  during  music  listening  Neuroreport 
 9(18):1815-9  . 

 Stein  MB,  Simmons  AN,  Feinstein  JS,  Paulus  MP.(2007)  Increased  amygdala  and  insula  ac�va�on  during  emo�on  processing  in  anxiety- 
 prone subjects.  Am J Psychiatry  164(2): 318-27 
 Baumgartner  T,  Lutz  K,  Schmidt  CF  and  Jancke  L  (2006).  The  emo�onal  power  of  music:  How  music  enhances  the  feeling  of  affec�ve 
 pictures.  Brain Research,  1075 (1), 151–164. 
 Eldar E, et al (2007) Feeling the real world: limbic response to music depends on related content.  Cereb  Cortex  17(12):2828-40. 
 Blood  AJ  and  Zatorre  RJ  (2001).  Intensely  pleasurable  responses  to  music  correlate  with  ac�vity  in  brain  regions  implicated  in  reward  and 
 emo�on.  Proceedings of the Na�onal Academy of Sciences  USA,  98(20), 11818–11823. 
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 APPENDIX 5 - EEG Audifica�on - X-System 

 The  demonstra�on  shows  how  X-System  uses  Mul�-Oscillatory  Dynamic  Analysis  to  “audify”  users’ 
 EEG,  and  then  uses  its  model  of  the  musical  brain  to  search  for  the  music  that  is  closest  to  the  users’ 
 EEG.  EEG  Audifica�on  can  provide  users  with  an  audio  representa�on  of  what  is  happening  in  their 
 own  brain,  or  the  brains  of  others.  The  demonstra�on  shows  how  XSL  uses  Mul�-Oscillatory  Dynamic 
 Analysis  to  “audify”  users’  EEG,  and  then  uses  its  model  of  the  musical  brain  to  search  for  the  music 
 that is closest to the users’ EEG. 
 While  CERTH  is  using  EEG  primarily  diagnos�cally  to  help  with  emo�onal  induc�on,  to  facilitate  body- 
 and-mind  communica�on  and  to  support  crea�ve  self-expression,  the  XSL  approach  is  designed  to 
 “audify”  the  user’s  brain  to  provide  musical  material  directly  from  the  user’s  mind,  but  also  to  search 
 the  world’s  repertoire  to  find  the  music  closest  in  frequency  profile  behaviour  to  the  user’s  brain. 
 Both  of  these  approaches  lend  themselves  to  rich  composi�onal  AI.  It  means  that  people  with  no 
 movement or communica�on can s�ll create music from their minds and bodies. 
 XSL  has  developed  two  ways  in  which  an  EEG  signal  can  be  transformed  into  music,  both  of  which 
 may serve as star�ng points for the development of co-crea�on specific technology. 
 The  first  of  these  methods  is  direct  audifica�on  60  .  Brain  wave  ac�vity  is  separated  into  different 
 frequency  bands,  for  instance  delta  waves  (between  around  0.8-4hz)  are  ac�ve  during  deep  sleep, 
 while  beta  waves  (12-30Hz)  signify  concentra�on.  Each  of  these  waves  can  be  thought  of  as  a 
 different  instrument,  which  has  its  specific  pitch  range  but  at  a  certain  moment  in  �me  plays  one 
 defined  pitch  in  that  range.  X-system  orchestrates  these  brain  waves  by  first  transposing  them  into 
 the  audible  spectrum  (50hz-20kHz)  and  addi�onally  arranging  the  brainwaves  detec�ng  from 
 different regions in the brain into harmonics of the brain-instrument. 
 A  second  technique  employed  by  XSL  is  using  these  direct  audifica�ons,  along  with  XSL’s  INRM,  to  find 
 exis�ng  music  that  ‘matches’  the  brain.  This  is  accomplished  by  analysing  both  the  direct 
 audifica�ons  and  a  library  of  music  in  terms  of  X-system  parameters,  such  as  harmonicity,  rhythmicity, 
 linear  harmonic  cost,  etc,  which  are  designed  to  mimic  how  the  human  brain  responds  to  musical 
 signals  in  various  different  brain  regions  (brain  stem,  amygdala,  motor  cor�ces,  auditory  cortex,  etc). 
 Once  this  analysis  is  complete,  both  the  music  and  the  direct  EEG  audifica�on  are  decomposed  into  a 
 series  of  parameters,  at  which  point  it  is  possible  to  match  exis�ng  music  and  EEG  based  on  those 
 parameters. 

 The  diagrams  below  show  icons  of  the  process  of  recording  EEG  (Figure  13),  the  process  of  wavelet 
 transform,  filtering  and  priori�sing  the  EEG  (Figure  14)  and  the  process  of  audifica�on,  turning  the 
 EEG signal to audible sound (Figure 15). 

 Figure 13:  EEG of system user 

 Figure 14:  Wavelet transform. 

 60 

 h�ps://en.wikipedia.org/wiki/Audifica�on#:~:text=By%20defini�on%2C%20it%20is%20described,mapped%20to%20sound%20pressure%2 
 0levels. 
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 Figure 15  : Audifica�on of EEG signal 

 There  is  the  second  approach  -  which  involves  rou�ng  the  audifica�on  to  X-System,  which  uses  its 
 model  of  the  musical  brain  to  search  for  the  music  in  the  exis�ng  world  repertoire  closest  to  the 
 electrical  ac�vity  of  the  user’s  brain  (Figure  16).  This  provides  very  personal  musical  material  for  AI 
 development and modula�on. 

 Figure 16:  Neurophysiological response to music 

 APPENDIX 6 - Par�cipatory Session - Share Music & X-System 

 A6.1 Workshop Details 

 Time and Loca�on 

 Par�cipatory Session 3 
 Visual Arena, Lindholmen, Gothenburg, Sweden 
 Monday 11  th  March 10:00 AM to 3.30 PM (DAY 1) 
 Tuesday 12  th  March 10:00 AM to 3.30 PM (DAY 2) 

 Aim 

 The aims of this par�cipatory workshop were threefold: 

 1.  HEART RATE 

 Page |  43 

DRAFT



 To  work  with  poten�al  users  making  use  of  heart  rate  sensors  to  evaluate  to  what  extent 
 heart  rate  signals  may  be  of  use  in  the  communica�on  of  states  of  mind  and  body  between 
 remote co-creators (for the purposes of this workshop, the co-creators will be in proximity). 

 2.  HAPTICS 
 To  work  with  users  to  evaluate  the  effec�veness  and  comfort  of  hap�c  signals  in  the 
 communica�on of heart rate and other vibra�onal informa�on. 

 3.  VISUAL REPRESENTATION 
 To  begin  the  process  of  designing  “avatars”  which  will  be  visual  representa�ons  of  human 
 states  of  mind  and  body  to  assist  in  emo�onal  communica�on  within  the  process  of  remote 
 co-crea�on. 

 Each module of the workshop had its own specific objec�ves. 

 Contributors 

 The  session  consisted  of  7  par�cipants,  with  different  kinds  of  disabili�es,  from  different  genders  and 
 ranging  from  20  to  44  in  age  contribu�ng  to  the  workshop  ar�s�c  input  and  exper�se  on  user  needs. 
 The  session  was  led  by  Nigel  Osborne  (SHMU).  4  other  members  of  the  SHMU  team  par�cipated,  as 
 did  2  members  from  XSL  and  3  from  HB.  5  personal  assistants  for  par�cipants  were  also  present  in 
 the room. 

 Instruments 

 Par�cipants  were  given  the  op�on  to  use  a  variety  of  electronic  musical  instruments,  and/or 
 microphones for the voice. 
 Nigel  Osborne  (SHMU)  led  the  workshop  with  guitar  /  violin  and  voice,  with  Jonathan  Walton  (XSL) 
 on trumpet and voice. 
 Instruments available for par�cipants were: 

 -  So�ware keyboard (iPad) 
 -  So�ware keyboard (iPad) 
 -  Korg Synthesizer with vocoder 
 -  Moog Theremin 
 -  Drum machine 
 -  Amplified metal percussion 

 Set-up 

 HEART RATE 
 -  Python script to read live streaming heart rate data from Polar H10 sensor 
 -  Python script to transform live streaming heart rate data to audio 
 -  Python script to send and receive data over Jack Trip 

 HAPTICS 
 -  Python  script  to  transmit  live  heart  rate  data  as  hap�c  output,  using  the  Actronica 

 HSD mk.2 board and 2 HapCoil Plus actuators 

 VISUAL REPRESENTATION 
 -  XSL  analysis  of  examples  of  favourite  pieces  of  music  supplied  by  our  par�cipants. 

 This  enabled  the  team  to  talk  to  each  par�cipant  in  terms  of  neurophysiological 
 predic�ons,  including  such  things  as  emo�ons  and  behaviour  of  the  heart  and  it 
 introduced  XSL’s  colour  circles,  a  possible  generator  of  avatars  and/or  aspects  of 
 avatars. 
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 -  Collec�ng  different  versions  of  avatars  from  games  /  unicode  /  popular  culture. 
 Examples  were  emoji-like,  figura�ve,  abstract  human  images,  abstract  art,  colour 
 systems (e.g. related to XSL) and combina�ons of the same. 

 A6.2 Module A - Recorded heartbeat explora�on 

 Dura�on:  2 hours with a  15-minute break 

 Objec�ves 
 -  To  familiarise  par�cipants  with  playing  music  with  heart  beats;  to  work  co-crea�vely 

 exploring  how  emo�ons  and  states  of  mind  and  body  may  be  communicated  through  heart 
 beats.  This  work  was  focussed  on  crea�ve  materials  and  heart  beats  featured  in  two  exis�ng 
 pieces of music - classic rock from Pink Floyd, classical roman�c from Gustav Mahler. 

 -  To  explore  different  speeds  of  heart  beat,  different  heart  rate  variabili�es  and  the  different 
 emo�ons and states of mind and body they are associated with. 

 Exercises 

 1.  Listen to Pink Floyd’s Breathe and comment on how it feels to hear a heartbeat in a song 
 2.  Co-improvise on the structure of the song over the original recorded heart beat 
 3.  Short discussion about the autonomic nervous system, arousal and heart rate 
 4.  Co-improvise  on a sound file of a slow male heart beat recorded during medita�on. 
 5.  Co-improvise  on a sound file of a fast female heart beat recorded a�er intensive exercise. 
 6.  Short discussion about heart rate variability, vagal power and valence 
 7.  Improvisa�on on fast heart beat with high heart rate variability (posi�ve valence, joyful) 
 8.  Co-improvise  on  a  sound  file  of  a  fast  male  heart  beat  with  high  variability,  probably 

 associated with a very strong, posi�ve feeling of joy - with a free choice of pitches. 
 9.  Co-improvise  on  a  sound  file  of  a  rigid  techno  beat  with  low  variability  in  order  to  illustrate 

 the difference between posi�ve and nega�ve valence. 

 Animateurs  supported  par�cipants  in  all  improvisa�on  exercises.  So�ware  instruments  were  set  to  a 
 par�cular  scale  (E  Dorian  /  D  Pentatonic)  to  make  sure  that  par�cipants  did  not  need  specifically 
 musical knowledge in order to be able to co-improvise harmoniously with the group. 

 Research Ques�ons 

 ●  What does it feel like playing with a heartbeat? 
 ●  What,  if  anything,  does  the  heartbeat  give  to  you  in  terms  of  personal/emo�onal  informa�on  or 

 s�mula�on? 
 ●  What is the difference between playing with a slow heartbeat and a fast heartbeat? 
 ●  What is the difference between playing with a rigid heartbeat and a variable heartbeat? 

 Findings 

 In  Module  A  the  group  co-improvised  with  an  exis�ng  piece  of  music  based  on  heart  beats  -  Pink 
 Floyd’s  Breathe  -  and  on  anonymous  recordings  of  heart  beats  related  to  different  emo�ons  and 
 states  of  mind  and  body  -  a  man  medita�ng,  a  woman  a�er  intensive  exercise,  a  person  very 
 ac�vated and joyful and a rigid echo track based on a fast heart beat. 
 Par�cipants  reported  that  they  found  the  exercises  interes�ng  and  enjoyable  to  work  with.  They 
 iden�fied  the  Pink  Floyd  heartbeat  as  maybe  “bored”,  “long-suffering”  or  even  “slightly  fearful”  and 
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 “searching  for  communica�on”  which  is  exactly  how  Roger  Waters  of  Pink  Floyd  describes  the  track: 
 “Speak  to  me  and  Breathe  together  highlight  the  mundane  and  fu�le  elements  of  being  alive,  but  also 
 the  importance  of  living  one's  own  life  –  and,  crucially  "Don't  be  afraid  to  care””  The  consensus  of 
 the  group  was  that  the  Pink  Floyd  heart  beat  communicated  these  emo�ons,  and  that  this  was 
 helpful and informa�ve in the process of co-improvisa�on. 
 The  purpose  of  the  two  examples  that  followed  was  to  inves�gate  heart  beats  as  indica�ve  of 
 autonomic  arousal.  The  slow,  medita�ve  (c40bpm)  heart  beat  produced  a  calm  and  spacious 
 co-improvisa�on. The fast heart beat a�er intensive exercise produced high energy and fun. 
 The  fast  joyful  heart  beat  and  rigid  techno  beat  were  intended  as  invita�ons  to  the  group  to  explore 
 high  vagal  power  (high  heart  rate  variability,  associated  with  posi�ve  feelings)  and  low  vagal  power 
 (low  heart  rate  variability,  associated  with  nega�ve  feelings.  Some  members  of  the  group  found  the 
 heart  beat  with  high  variability  more  difficult  to  “perform”  with,  which  was  indica�ve  of  a  very 
 important  point:  many  par�cipants  were  using  the  heartbeat  as  a  rhythmic  cue,  as  much  as,  and 
 possibly  more  than  as  an  emo�onal  cue.  It  is  clear  that  using  heart  beats  is  poten�ally  musically 
 “invasive”  or  rhythmically  “obliging”  as  well  as  emo�onally  informa�ve.  The  group  indicated  that  this 
 was not necessarily a bad thing. 
 An  interes�ng  conversa�on  followed  the  exercise  with  techno  beats.  Surprisingly  the  group  found 
 that  the  beats  in  some  ways  communicated  nega�ve  emo�on,  which  is  what  the  experience  of 
 neurophysiology  would  suggest:  high  autonomic  arousal  combined  with  low  heart  rate  variability  and 
 low  vagal  power  is  associated  with  anger  or  distress.  A  conversa�on  followed  about  how  we  can 
 some�mes enjoy elements of nega�vity or “danger” in music. 
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 A6.3 Module B - Live heartbeat co-crea�on 

 Dura�on: 2 hours with a 30-minute break 

 Objec�ves 

 To begin co-improvisa�on with the live sound of the heart of one or two of the par�cipants. 

 To  work  with  hap�c  transmission  of  heart  beats  between  par�cipants,  and  to  explore  and  assess  how 
 effec�ve this may be in communica�ng states of mind and body and suppor�ng remote co-crea�on 

 Exercises 
 1.  Listening live to heart rate of a single par�cipant 
 2.  Group co-improvisa�on with live heart-rate data 
 3.  Passing around the hap�c actuators of two par�cipants for reac�on 
 4.  Asking  par�cipants  to  respond  to  where  on  their  body  it  feels  most  comfortable  to  place 

 hap�c actuators 
 5.  Group  co-improvisa�on  with  heart  beats  of  two  members  of  the  group  using  hap�c  actuators 

 to convey the sensa�on of the heart beat. 

 One  of  the  par�cipants  wore  the  Polar  H10  sensor,  and  the  heart  rate  data  was  played  live  as  audio  to 
 the  room.  The  group  as  a  whole  then  co-improvised  with  these  individual  heart  beats,  as  a 
 musical-emo�onal  reac�on  to  the  quality  of  heartbeat.  The  chosen  par�cipant  decided  from  among 
 the improvisa�ons in Module A which pitch material they wanted to use with their heart beat. 

 Research Ques�ons 

 ●  How  much  can  you  sense  a  person’s  character  and  feelings  by  improvising  with  their 
 heartbeat? 

 ●  Which felt be�er - improvising freely with heartbeat, or improvising in �me with it? 
 ●  What  did  the  par�cipants  think  and  feel  about  experiencing  someone  else's  ECG  signal 

 hap�cally?  Was  it  comfortable?  Intrusive?  How  was  the  intensity  of  the  sensa�on,  was  it  too 
 intense?  Not  intense  enough?  Did  the  par�cipants  no�ce  any  increase  in  emo�onal 
 connec�on to the person whose ECG they could feel? 

 ●  How  did  these  experiences  relate  to  the  accompanying  music?  Did  the  experiences 
 compound  and  fit  together  naturally,  or  did  they  feel  a  disconnect  or  juxtaposi�on?  Did  they 
 find the experience inspiring musically or otherwise? 

 ●  What  other  things  would  the  par�cipants  want  to  experience  hap�cally  in  the  context  of  a 
 musical  experience?  Other  biological  signals?  The  music  itself  (melodic,  harmonic  or  rhythmic 
 informa�on)? 

 ●  What  kind  of  device  suits  the  par�cipants  for  receiving  hap�c  informa�on?  Is  the  vest 
 comfortable?  Can  they  imagine  spending  a  long  period  of  �me  in  the  vest?  Does  the  vest 
 s�fle  any  movements/ac�ons  needed  for  crea�ng  music?  Can  the  par�cipants  think  of  any 
 other  ways  in  which  they  would  prefer  to  receive  hap�c  informa�on?  (I’m  not  sure  here  what 
 choices/possibili�es we have for hap�c devices) 

 Findings 

 The  responses  to  “anonymous”  heart  beats  had  been  posi�ve,  in  the  sense  that  emo�ons  and  states 
 of  mind  and  body  had  been  to  some  extent  communicated,  and  that  the  experience  of 
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 co-improvisa�on  had  been  enjoyable  -  but  with  the  important  caveat  that  heart  beats  can  also 
 impose themselves as rhythmic cues. 
 Audifica�ons  of  heart  beats  of  those  in  the  room,  however,  produced  very  strong  reac�ons. 
 Par�cipants  described  the  experience  as  “strange”,  “weird”  and  “spooky”  on  the  one  hand  and 
 “in�mate”  ,  “strong”  and  “very  moving”  on  the  other.  One  par�cipant,  among  the  more  musically 
 experienced,  reported  that  she  could  “feel  the  energy”  of  the  person  whose  heart  beat  was  being 
 audified. 
 The  session  was  organised  as  a  series  of  duets  between  the  par�cipant  whose  heart  beat  was  being 
 audified  (he  was  also  singing),  and  each  of  the  remaining  par�cipants  in  turn.  The  result  was,  by 
 agreement  of  both  par�cipants  and  animateurs,  among  the  best  and  most  exci�ng  work  of  its  kind 
 those  present  had  ever  experienced.  Once  again  there  was  the  issue  of  the  musically  rhythmic  (as 
 opposed  to  emo�onally  informa�ve)  effect  of  the  heart,  but  this  seemed  to  pale  into  insignificance  in 
 the presence of such powerful and immersive crea�vity. 
 The  encouraging  surprises  were  not  over.  The  next  stage  was  communica�ng  the  heart  beat  through 
 a  single  hap�c  actuator  ,that  could  be  held  in  the  hand,  pressed  against  chosen  parts  of  the  body  or 
 worn  in  a  sleeve.  The  team  hooked  up  two  par�cipants.  One  of  them,  when  he  was  handed  the 
 actuator,  shouted  out  in  high  passion,  “Oh  f**k!  I’m  holding  my  heart!”.  Passions  were  indeed  high, 
 and  passing  around  the  actuator  seemed  to  create  a  less  rhythmically  obliging  but  no  less  emo�onally 
 informa�ve experience for the par�cipants. 
 There  were  several  different  aspects  of  the  hap�c  heart  beat  communica�on  to  consider.  The  first 
 was  the  choice  of  actuator  algorithm.  Three  different  algorithms  had  been  developed  by  XSL. 
 Par�cipants  were  very  clear  on  their  choice:  it  was  in  fact  a  con�nuous  vibra�on  modulated  by  hap�c 
 signals from the heart. It gave the most complete and “realis�c” representa�on of the heart beat. 
 Other  aspects  for  considera�on  were  related  to  where  the  actuator  should  be  placed  on  the  body. 
 There  were  widely  differing  opinions  among  par�cipants,  which  was  perhaps  to  be  expected  among  a 
 diverse  group.  There  were  two  front  runners:  on  the  upper  forearm  (which  is  serendipitously  where 
 the actuator “sleeve” is designed to sit) and on the back of the neck at the top of the spine. 
 It  is  possible  that  in  the  design  of  the  pla�orm  the  team  will  have  to  prepare  for  more  than  one 
 actuator loca�on on the body. 

 A6.4 Module C - Music and emo�on 

 Dura�on: 2 hours with a 15-minute break 

 Objec�ves 

 To  explore  issues  of  music  and  emo�on,  including  X-System  analyses  and  issues  of  images  and  colours 
 to prepare the way for the choice and design of avatars. 

 Exercises 
 1.  A  review  of  X-System  analyses  of  par�cipants'  crea�ve  work  or  personal  choices  of  repertoire, 

 including discussion of autonomic, endocrine, limbic, motor and and emo�onal issues. 
 2.  Each  soloist  chose  one  of  the  emo�ons  listed  on  the  colour  wheel  (Figure  17)  and  created  a 

 piece responding to a par�cular emo�on or combina�on of emo�ons. 
 3.  The group performed each of the pieces as a co-improvisa�on. 
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 Figure 17:  Emo�onal Colour Wheel 

 Research Ques�ons 

 ●  What emo�ons do the par�cipants feel when playing or listening to music? 
 ●  Can the same piece of music trigger different emo�ons depending on how you are feeling? 

 Findings 

 The session began with discussion of XSL analyses of “favourite” pieces of par�cipants. 
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 The  XSL  colour  circle  is  a  way  of  displaying  emo�on  through  predic�ons  of  arousal  (related  to  speed 
 of  heart,  the  y  axis)  and  vagal  power  (related  to  heart  rate  variability,  the  x  axis).  It  was  very 
 interes�ng  to  see  how  close  together  the  par�cipant’s  musical-emo�onal  preferences  were.  Even 
 though  Back  in  Black  is  an  AC/DC  song  and  21  Guns  a  Green  Day  number,  both  are  gentler  and  have 
 greater vagal power than most heavy metal or neo-Punk rock. 

 The  analyses  served  as  a  bridge  between  discussions  about  the  heart  and  autonomic  nervous  system 
 and more general discussions about emo�on, including the body’s chemistry etc. 

 Par�cipants  chose  emo�ons  from  the  colour  circle/emoji  graphic  in  the  manual  and  developed 
 musical  material,  subsequently  shared  with  the  whole  group  in  co-improvisa�on.  One  par�cipant 
 chose  “thrilled”,  which  the  group  decided  belonged  somewhere  between  “excited”  and  “highly 
 ac�vated”.  All  par�cipants  said  they  were  comfortable  with  this  way  of  working  and  with  rela�ng 
 emo�ons  to  musical  expression.  Indeed,  disabled  musicians  o�en  seem  to  be  more  “at  home” 
 rela�ng to emo�onal cues than others. 

 A6.5 Module D - Avatars 

 Dura�on: 2 hours with a 30-minute break 

 Objec�ves 

 To  explore  co-improvisa�on  using  a  variety  of  avatars  as  s�muli,  with  a  view  to  determine  what  kind 
 of avatar will be most effec�ve in communica�ng emo�on and states of mind and body. 

 Crea�ve design of avatars. 

 Exercises 

 1.  Par�cipants discussed various kinds of avatars 
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 2.  Using coloured pencils and paper, par�cipants created designs for poten�al avatars. 

 Research Ques�ons 

 ●  How  do  par�cipants  experience  other  people's  emo�ons  in  a  musical  performance 
 environment but also in general? How do they pick up on these emo�ons? 

 ●  How  could  these  emo�ons  be  represented  visually,  hap�cally  or  otherwise?  Is  there  a 
 difference  in  how  par�cipants  would  like  their  own  emo�ons  represented  and  how  they 
 would like to learn about others? 

 ●  How  could  these  avatars,  or  representa�ons,  respond  to  the  bea�ng  of  the  heart  or  other 
 informa�on like brain waves? 

 ●  Can  the  par�cipants  draw  or  describe  or  otherwise  illustrate  these  emo�ons?  Do  they  have  a 
 colour,  shape,  or  ac�on  associated  with  them?  If  they  can  imagine  themselves  represented  by 
 a  small  avatar,  what  would  this  avatar  be  doing  while  experiencing  each  emo�on?  How  would 
 its appearance change? 

 Findings 

 In  Module  D  the  group  discussed  avatars  as  a  way  of  communica�ng  states  of  mind  and  body  from 
 one  remote  co-creator  to  another.  Various  examples  were  projected  onto  a  screen  in  the  studio, 
 ranging  from  realis�c  faces,  to  cartoon-  or  emoji-like  images,  to  more  abstract  shapes  Most 
 par�cipants  could  relate  to  most  of  the  avatars,  but  found  some  of  them,  in  par�cular  a  cartoon 
 image  of  a  girl’s  face  with  long  eyelashes  and  heavy  lips�ck  as  stereotypical  in  a  sexist  way.  In  general 
 par�cipants  responded  most  enthusias�cally  to  expressive  and  richly  colourful  “painterly”  images  of 
 human faces with aesthe�c ambi�on, fantasy and elements of abstrac�on. 

 A  crucially  important  point  was  raised  by  one  of  the  par�cipants  who  is  a  commi�ed  gamer.  He 
 pointed  out  that  when  he  chose  an  avatar,  it  was  because  he  wanted  to  become  someone  else,  or 
 more  precisely  someone  other  than  himself  and  to  feel  different  things,  as  opposed  to  the  avatars 
 that  we  were  discussing,  which  were  intended  to  be  true  representa�ons  of  the  emo�ons  of 
 co-creators. 

 In  the  next  phase  of  Module  D,  par�cipants  designed  avatars  for  themselves  specifically  intended  to 
 be  capable  of  communica�ng  their  true  emo�ons  and  states  of  mind  and  body,  in  a  way  that  would 
 be useful for remote co-crea�on. 
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 Here are the avatars, together with the comments and explana�ons of their creators. 

 Figure  19:  This  was  designed  by  one  of  the  assistants.  It 
 represents  six  different  avatars  for  emo�ons  conveyed  through 
 different colours and dynamics and energy flow of the lines. 

 Figure  20:  This  was  designed  by  a  par�cipant.  The  avatars  are 
 flowers  and  images  of  nature  represen�ng  human  emo�on. 
 Here  the  avatars  are  angry.  This  is  communicated  through 
 colours  and  through  the  disturbed  expression  on  the  face  of  the 
 dandelion. 

 Figure  21:  This  is  a  fantasy  animal  avatar.  He  is  King  of  the  Cats, 
 proud, 
 confident, resilient, “in charge” and happy. 
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 Figure  22:  This  was  designed  by  an  assistant  and  contains  12  possible  models  for  an  avatar,  each  of 
 them capable of expressing emo�ons through facial expression and movement of limbs. 

 Figure  23:  This  is  designed  by  a  par�cipant.  The  different-coloured  “pixels”  express  emo�on,  and 
 “swarm” in dynamic shapes that are also capable of expressing the energies of various emo�ons. 
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 Figure  24:  For  this  avatar,  the  shape  is  intended  to  remain  more  or  less  the  same.  The  colours  change 
 to convey emo�ons. 

 Figure  25:  This  is  an  amoeba  that  can  change  shape  and  move  in  expressive  ways.  Emo�on  is  also 
 conveyed  by  colours.  The  creator  generated  it  by  arm  movements  and  by  way  of  clear  instruc�ons 
 where colours should begin or end. 

 A6.6 Summa�ve exercise 

 Objec�ves 

 To  evaluate  the  performance  of  the  algorithms  discussed  in  sec�on  3.1  in  the  context  of  the  work 
 performed  in  module  B.  In  other  words,  the  concepts  and  technologies  explored  in  the  session  were 
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 put  more  concretely  into  the  context  of  a  usable  co-crea�on  pla�orm,  using  transmission  of 
 heart-rate data as a case study. 

 Exercises 

 1.  Remote co-crea�on between two rooms incorpora�ng live heart-rate and avatar design. 

 Research Ques�ons 

 ●  Would direct ECG audifica�on transmit cleanly and synchronously over Jacktrip? 
 ●  Would  the  pla�orm  succeed  in  remotely  reproducing  the  co-crea�ve  experiences  the 

 par�cipants had during the in-person sessions? 
 ●  Would the technology that was tested ‘in-house’ perform in a new and unfamiliar se�ng? 

 Findings 

 The  par�cipant  who  created  the  avatar  in  Figure  25  volunteered  to  be  the  “remote”  co-creator  in  the 
 final  exercise  of  the  workshop.  She  was  isolated  with  her  assistants  in  a  separate  room  with  sound 
 a�enua�on,  headphones,  a  microphone  and  polar  heart  sensor.  Her  avatar  (above)  was  projected  in 
 the room with the rest of the group. 
 Jack  Trip  was  used  to  carry  the  heart  beat  signal  and  the  sound  of  her  voice  to  the  group  as  a  whole. 
 The group could hear her heart beat and “feel” it through the hap�c actuator. 
 The  group  co-created  and  co-improvised  on  the  basis  of  this  remote  musical,  em  o�onal  and 
 “state-of-mind-and-body”  communica�on.  It  was  a  fi�ng  summa�on  -  including  remote  co-crea�on, 
 audifica�ons  of  heart  beats,  hap�c  heart  beat,  emo�onal  communica�on  and  avatars  -  to  a 
 produc�ve and insigh�ul two-day workshop. 
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